×

A CFD data-driven aerodynamic model for fast and precise prediction of flapping aerodynamics in various flight velocities. (English) Zbl 1461.76587

Summary: Precise prediction of unsteady flapping aerodynamics in insect flight is of potential importance in the analysis of maneuverability and flight control. While the quasi-steady model is a cheap while reasonable tool, accurate evaluation of unsteady dynamic effects in complex flight behaviours remains a challenge. Here we develop a computational fluid dynamics (CFD) data-driven aerodynamic model (CDAM), which is informed by high-fidelity CFD simulations using overset meshes to enable the precise and fast prediction of both cycle-averaged and transient aerodynamic force, torque and power with various flying motions and wing kinematics. The CDAM comprises a quasi-steady model for flapping wings and an aerodynamic model for a moving body. The least square method and a surrogate method are employed to achieve aerodynamic coefficient fitting through training using a CFD database. With comparison to CFD test data, the CDAM is validated to be capable of accurately evaluating the aerodynamic force, torque and power of a wing-body bumblebee model in various flight velocities. A genetic optimization algorithm embedded with CDAM is proposed to determine trimmed states for forward flight through adjusting wing kinematics, indicating that bumblebees likely fly in a minimized mass-specific aerodynamic power consumption. The CDAM is further applied to proportional-derivative-based longitudinal flight control of bumblebee hovering, with the control parameters optimized by Laplace transformation and the root locus method, which is implemented consistently in both CDAM and CFD environments. Our results demonstrate that CDAM provides a versatile tool to achieve fast and precise aerodynamical prediction for flying insects in various flight behaviours.

MSC:

76Z10 Biopropulsion in water and in air
92C10 Biomechanics

Software:

DACE; Flappy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, A., Pesavento, U. & Wang, Z.J.2005Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech.541, 65-90. · Zbl 1082.76037
[2] Aono, H. & Liu, H.2006Vortical structure and aerodynamics of hawkmoth hovering. J. Biomech. Sci. Engng1 (1), 234-245.
[3] Balint, C.N. & Dickinson, M.H.2001The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Expl Biol.204 (24), 4213-4226.
[4] Beatus, T., Guckenheimer, J.M. & Cohen, I.2015Controlling roll perturbations in fruit flies. J. R. Soc. Interface12 (105), 20150075.
[5] Berman, G.J. & Wang, Z.J.2007Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech.582, 153-168. · Zbl 1115.76086
[6] Bluman, J. & Kang, C.K.2017Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bioinspir. Biomim.12 (4), 046004.
[7] Cheng, B., Fry, S.N., Huang, Q. & Deng, X.2010Aerodynamic damping during rapid flight maneuvers in the fruit fly drosophila. J. Expl Biol.213 (4), 602-612.
[8] Cheng, X. & Sun, M.2018Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force. J. Fluid Mech.855, 646-670. · Zbl 1415.76789
[9] Combes, S.A., Gagliardi, S.F., Switzer, C.M. & Dillon, M.E.2020Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads. Sci. Adv.6 (6), eaay3115.
[10] Demoll, R.1918Der Flug der Insekten und der Vögel: eine Gegenüberstellung. G. Fischer.
[11] Deng, X., Schenato, L. & Sastry, S.S.2006Flapping flight for biomimetic robotic insects: part II-flight control design. IEEE Trans. Robot.22 (4), 789-803.
[12] Dickinson, M.H., Lehmann, F. -O. & Sane, S.P.1999Wing rotation and the aerodynamic basis of insect flight. Science284 (5422), 1954-1960.
[13] Dickinson, M.H. & Muijres, F.T.2016The aerodynamics and control of free flight manoeuvres indrosophila. Phil. Trans. R. Soc B371 (1704), 20150388.
[14] Dickson, W.B. & Dickinson, M.H.2004The effect of advance ratio on the aerodynamics of revolving wings. J. Expl Biol.207 (24), 4269-4281.
[15] Dickson, W.B., Straw, A.D., Poelma, C. & Dickinson, M.H.2006 An integrative model of insect flight control. AIAA Paper 2006-34.
[16] Dudley, R. & Ellington, C.P.1990aMechanics of forward flight in bumblebees: I. Kinematics and morphology. J. Expl Biol.148 (1), 19-52.
[17] Dudley, R. & Ellington, C.P.1990bMechanics of forward flight in bumblebees: II. Quasi-steady lift and power requirements. J. Expl Biol.148 (1), 53-88.
[18] Dyhr, J.P., Morgansen, K.A., Daniel, T.L. & Cowan, N.J.2013Flexible strategies for flight control: an active role for the abdomen. J. Expl Biol.216 (9), 1523-1536.
[19] Ellington, C.P.1984The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans. R. Soc. Lond. B305 (1122), 1-15.
[20] Ellington, C.P. & Lighthill, M.J.1984The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B305 (1122), 79-113.
[21] Engels, T., Kolomenskiy, D., Schneider, K., Lehmann, F.-O. & Sesterhenn, J.2016aBumblebee flight in heavy turbulence. Phys. Rev. Lett.116 (2), 028103.
[22] Engels, T., Kolomenskiy, D., Schneider, K. & Sesterhenn, J.2016bFluSI: A novel parallel simulation tool for flapping insect flight using a fourier method with volume penalization. SIAM J. Sci. Comput.38 (5), S3-S24. · Zbl 1348.76106
[23] Evans, W.R.1948Graphical analysis of control systems. IEEE67 (1), 547-551.
[24] Fei, F., Tu, Z., Yang, Y., Zhang, J. & Deng, X.2019a Flappy hummingbird: An open source dynamic simulation of flapping wing robots and animals. In 2019 International Conference on Robotics and Automation (ICRA), pp. 9223-9229.
[25] Fei, F., Tu, Z., Zhang, J. & Deng, X.2019b Learning extreme hummingbird maneuvers on flapping wing robots. In 2019 International Conference on Robotics and Automation (ICRA), pp. 109-115.
[26] Franklin, G.F., Powell, J.D. & Emami-Naeini, A.2014Feedback Control of Dynamic Systems. Prentice Hall. · Zbl 0615.93001
[27] Fung, Y.C.2008An Introduction to the Theory of Aeroelasticity. Courier Dover Publications. · Zbl 1156.74001
[28] Glauert, H.1983The Elements of Aerofoil and Airscrew Theory. Cambridge University Press. · JFM 52.0880.03
[29] Hansen, N. & Kern, S.2004Evaluating the CMA Evolution Strategy on Multimodal Test Functions, pp. 282-291. Springer.
[30] Hansen, N., Müller, S.D. & Koumoutsakos, P.2003Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput.11 (1), 1-18.
[31] Hedrick, T.L., Cheng, B. & Deng, X.2009Wingbeat time and the scaling of passive rotational damping in flapping flight. Science324 (5924), 252-255.
[32] Hedrick, T.L. & Daniel, T.L.2006Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J. Expl Biol.209 (16), 3114-3130.
[33] Hengstenberg, R., Sandeman, D.C., Hengstenberg, B. & Horridge, G.A.1986Compensatory head roll in the blowfly calliphora during flight. Proc. R. Soc. Lond. B227 (1249), 455-482.
[34] Hoff, W.1919Der flug der insekten und der Vögel. Naturwissenschaften7, 159-162.
[35] Ishihara, D.2018Role of fluid-structure interaction in generating the characteristic tip path of a flapping flexible wing. Phys. Rev. E98, 032411.
[36] Jakobi, T., Kolomenskiy, D., Ikeda, T., Watkins, S., Fisher, A., Liu, H. & Ravi, S.2018Bees with attitude: the effects of directed gusts on flight trajectories. Biol. Open7 (10), bio034074.
[37] Jensen, M. & Pringle, J.W.S.1956Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. R. Soc. Lond. B239 (667), 511-552.
[38] Kolomenskiy, D., et al.2019The dynamics of passive feathering rotation in hovering flight of bumblebees. J. Fluids Struct.91, 102628.
[39] Lee, Y.J., Lua, K.B., Lim, T.T. & Yeo, K.S.2016A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinspir. Biomim.11 (3), 036005.
[40] Lentink, D. & Dickinson, M.H.2009Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol.212 (16), 2705-2719.
[41] Liu, G., Dong, H. & Li, C.2016aVortex dynamics and new lift enhancement mechanism of wing-body interaction in insect forward flight. J. Fluid Mech.795634-651. · Zbl 1359.76360
[42] Liu, H.2002Computational biological fluid dynamics: digitizing and visualizing animal swimming and flying. Integr. Compar. Biol.42 (5), 1050-1059.
[43] Liu, H.2009Integrated modelling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys.228 (2), 439-459. · Zbl 1409.76154
[44] Liu, H. & Aono, H.2009Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim.4 (1), 015002.
[45] Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C. & Willmott, A.P.1998A computational fluid dynamic study of hawkmoth hovering. J. Expl Biol.201 (4), 461-477.
[46] Liu, H. & Kawachi, K.1998A numerical study of insect flight. J. Comput. Phys.146 (1), 124-156. · Zbl 0929.76092
[47] Liu, H., Nakata, T., Gao, N., Maeda, M., Aono, H. & Shyy, W.2010Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability. Acta Mechanica Sin.26 (6), 863-879. · Zbl 1270.76096
[48] Liu, H., Ravi, S., Kolomenskiy, D. & Tanaka, H.2016bBiomechanics and biomimetics in insect-inspired flight systems. Phil. Trans. R. Soc. B371 (1704), 20150390.
[49] Lophaven, S.N., Nielsen, H.B. & Søndergaard, J.2002 DACE - a Matlab Kriging toolbox, version 2.0. Tech Rep. Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby.
[50] Nabawy, M.R.A. & Crowther, W.J.2014On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation. J. R. Soc. Interface11 (94), 20131197.
[51] Nakata, T., Liu, H. & Bomphrey, R.J.2015A CFD-informed quasi-steady model of flapping-wing aerodynamics. J. Fluid Mech.783, 323-343. · Zbl 1382.76311
[52] Nakata, T., Liu, H., Tanaka, Y., Nishihashi, N., Wang, X. & Sato, A.2011Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir. Biomim.6 (4), 045002.
[53] Nguyen, T.T., Shyam Sundar, D., Yeo, K.S. & Lim, T.T.2016Modeling and analysis of insect-like flexible wings at low Reynolds number. J. Fluids Struct.62, 294-317.
[54] Oh, S., Lee, B., Park, H., Choi, H. & Kim, S.2020A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus). J. Fluid Mech.885, A18. · Zbl 1460.76987
[55] Osborne, M.F.M.1951Aerodynamics of flapping flight with application to insects. J. Expl Biol.28 (2), 221-245.
[56] Pesavento, U. & Wang, Z.J.2004Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett.93 (14), 144501.
[57] Ravi, S., Kolomenskiy, D., Engels, T., Schneider, K., Wang, C., Sesterhenn, J. & Liu, H.2016Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Sci. Rep.6, 35043.
[58] Sane, S.P. & Dickinson, M.H.2002The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol.205 (8), 1087-1096.
[59] Sedov, L.I.1965Two-dimensional Problems in Hydrodynamics and Aerodynamics. Interscience. · Zbl 0131.40901
[60] Shyy, W., Aono, H., Kang, C. & Liu, H.2013An Introduction to Flapping Wing Aaerodynamics. Cambridge University Press.
[61] Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H.2007Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.
[62] Sun, M., Wang, J. & Xiong, Y.2007Dynamic flight stability of hovering insects. Acta Mechanica Sin.23 (3), 231-246. · Zbl 1202.92007
[63] Tu, M.S. & Dickinson, M.H.1996The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Compar. Physiol. A178 (6), 813-830.
[64] Usherwood, J.R. & Ellington, C.P.2002The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. J. Expl Biol.205 (11), 1565-1576.
[65] Van Dalsem, W.R. & Steger, J.L.1986 Using the boundary-layer equations in three-dimensional viscous flow simulations. In Proceedings of AGARD Fluid Dynamics Panel Symposium on Application of CFD in Aeronautics, pp. 7-10.
[66] Van Veen, W.G., Van Leeuwen, J.L. & Muijres, F.T.2019A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study. J. R. Soc. Interface16 (155), 20190118.
[67] Wang, Q., Goosen, J.F.L. & Van Keulen, F.2016A predictive quasi-steady model of aerodynamic loads on flapping wings. J. Fluid Mech.800, 688-719. · Zbl 1445.76050
[68] Wang, Z.J.2004Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J. Expl Biol.207 (3), 449-460.
[69] Weis-Fogh, T.1973Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol.59 (1), 169-230.
[70] Whitney, J.P. & Wood, R.J.2010Aeromechanics of passive rotation in flapping flight. J. Fluid Mech.660, 197-220. · Zbl 1205.76318
[71] Willmott, A.P. & Ellington, C.P.1997The mechanics of flight in the hawkmoth manduca sexta. I. Kinematics of hovering and forward flight. J. Expl Biol.200 (21), 2705-2722.
[72] Xiong, Y. & Sun, M.2008Dynamic flight stability of a bumblebee in forward flight. Acta Mechanica Sin.24 (1), 25-36. · Zbl 1257.76186
[73] Yao, J. & Yeo, K.S.2019A simplified dynamic model for controlled insect hovering flight and control stability analysis. Bioinspir. Biomim.14 (5), 056005.
[74] Yu, X. & Sun, M.2009A computational study of the wing-wing and wing-body interactions of a model insect. Acta Mechanica Sin.25 (4), 421-431. · Zbl 1178.76398
[75] Zhang, C., Hedrick, T.L. & Mittal, R.2019An integrated study of the aeromechanics of hovering flight in perturbed flows. AIAA J.57 (9), 3753-3764.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.