×

Multivariate Bayesian control chart based on economic-statistical design with 2 and 3-variable sample size. (English) Zbl 1464.62531

Summary: Some key factors in control chart use are associated with the speed of detecting process mean shifts, which are important in minimizing the number of false alarms and cost. Researchers proved that the Fixed Ratio Sampling (FRS) policy has some deficiency in detecting small and moderate shifts. Hence, they improved this issue by proposing the Variable Sample Size (VSS) strategy. They illustrated that this sampling model was more influential in detecting mean shifts. Subsequently, Variable Sample Size with Three-States (3-VSS) was investigated to improve the performance of VSS. It was shown that the performance of the 3-VSS model is more efficient than the VSS policy. In this paper, VSS and 3-VSS are considered in a multivariate Bayesian control chart based on the economic-statistical design. Due to the fact that the distribution of Bayesian statistic is hard to achieve, we apply the Monte Carlo method and employ the artificial bee colony (ABC) algorithm to obtain the optimal design parameters for VSS and 3-VSS models (sample sizes, sampling interval, warning limit(s), and control limit). Hotelling’s \(T^2\) and FRS are the most popular multivariate control chart and sampling scheme, respectively. Thus, in order to demonstrate the statistical and economic desirability of VSS and 3-VSS multivariate Bayesian control charts, this case study is compared with VSS and 3-VSS Hotelling’s \(T^2\) as well as FRS multivariate Bayesian control charts.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62P20 Applications of statistics to economics
62K05 Optimal statistical designs
62H12 Estimation in multivariate analysis
90B50 Management decision making, including multiple objectives

Software:

ABC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hotelling, H., Techniques of Statistical Analysis (1947), New York: McGraw-Hill, New York
[2] Girshick, M. A.; Rubin, H., A Bayes approach to a quality control model, Ann. Math. Stat., 23, 114-125 (1952) · Zbl 0046.35405 · doi:10.1214/aoms/1177729489
[3] Taylor, H. M., Markovian sequential replacement processes, Ann. Math. Stat., 36, 13-21 (1965) · Zbl 0139.37802 · doi:10.1214/aoms/1177699796
[4] Taylor, H. M., Statistical control of a Gaussian process, Technometrics, 9, 29-41 (1967) · Zbl 0147.16101 · doi:10.1080/00401706.1967.10490439
[5] Calabrese, J. M., Bayesian process control for attributes, Manage. Sci., 41, 637-645 (1995) · Zbl 0836.90080 · doi:10.1287/mnsc.41.4.637
[6] Tagaras, G.; Nikolaidis, Y., Comparing the effectiveness of various Bayesian \(X\), Oper. Res., 50, 878-888 (2002) · Zbl 1163.62354 · doi:10.1287/opre.50.5.878.361
[7] Maikis, V., Multivariate Bayesian process control for a finite production run, Eur. J. Oper. Res., 194, 795-806 (2009) · Zbl 1168.90401 · doi:10.1016/j.ejor.2008.01.001
[8] Yin, Z.; Makis, V., Economic and economic-statistical design of a multivariate Bayesian control chart for condition-based maintenance, IMA J. Manage. Math., 22, 47-63 (2011) · Zbl 1206.62181 · doi:10.1093/imaman/dpp026
[9] M. Tavakoli, R. Pourtaheri, and M. B. Moghadam, ‘‘Economic and Economic-Statistical design of FRS Bayesian control chart using Monte Carlo method and artificial bee colony (ABC) algorithm, articles,’’ İSTATİSTİK 8, 74-81 (2014). · Zbl 1420.62513
[10] Tavakoli, M.; Pourtaheri, R.; Moghadam, M. B., Economic and Economic-Statistical designs of VSI Bayesian control chart Using Monte Carlo method and ABC algorithm, J. Stat. Comput. Simul., 87, 766-776 (2015) · Zbl 07191969 · doi:10.1080/00949655.2016.1225069
[11] Tavakoli, M.; Pourtaheri, R.; Moghadam, M. B., Multivariate Bayesian control chart based on economic and economic-statistical design using Monte Carlo method and ABC algorithm, Int. J. Quality Eng. Technol., 6, 67-81 (2015) · Zbl 1420.62513 · doi:10.1504/IJQET.2016.081638
[12] Burr, I. W., Control charts for measurements with varying sample sizes, J. Quality Technol., 1, 163-167 (1969) · doi:10.1080/00224065.1969.11980368
[13] Daudin, J. J., Double sampling \(\overline{X} \), J. Quality Technol., 24, 78-87 (1992) · doi:10.1080/00224065.1992.12015231
[14] Prabhu, S. S.; Runger, G. C.; Keats, J. B., Int. J. Product. Res., 31, 2895-2909 (1993) · doi:10.1080/00207549308956906
[15] Costa, A. F. B., J. Quality Technol., 26, 155-163 (1994) · doi:10.1080/00224065.1994.11979523
[16] Aparisi, F., Hotelling’s \(T^2\), Int. J. Production Res., 34, 2853-2862 (1996) · Zbl 0929.90015 · doi:10.1080/00207549608905062
[17] Najmi Sarooghi, N.; Bamenimoghadam, M., Economic statistical design of multivariate \(T^2\), Int. J. Appl. Operat. Res., 1, 1-13 (2011)
[18] Duncan, A. J., The economic design of \(X\), J. Am. Stat. Assoc., 51, 228-242 (1956) · Zbl 0071.13703
[19] Duncan, A. J., The economic design of 2 charts where there is a multiplicity of assignable causes, J. Am. Stat. Assoc., 66, 107-121 (1971) · Zbl 0221.62034
[20] Lorenzen, T. J.; Vance, L. C., The economic design of control charts: A unified approach, Technometrics, 28, 3-10 (1986) · Zbl 0597.62106 · doi:10.1080/00401706.1986.10488092
[21] Banerjee, P. K.; Rahim, M. A., Economic design of \(X\), Technometrics, 30, 407-414 (1988) · Zbl 0721.62101
[22] Chou, C.-Y.; Chen, C.-H.; Chen, C.-H., Economic design of variable sampling intervals \(T^2\), Expert Syst. Appl., 30, 233-242 (2006) · doi:10.1016/j.eswa.2005.07.010
[23] Chen, Y. K., Economic design of \(T^2\), Quality Quantity, 43, 109-122 (2009) · doi:10.1007/s11135-007-9101-7
[24] Torabian, M.; Moghadam, M. B.; Faraz, A., Economically designed Hotelling’s \(T^2\), Arab. J. Sci. Eng., 35, 251-263 (2010)
[25] Woodall, W. H., Weaknesses of the economical design of control charts, Technometrics, 28, 408-409 (1986) · doi:10.2307/1269000
[26] Saniga, E. M., Economic statistical control chart designs with an application to \(X\), Technometrics, 31, 313-320 (1989)
[27] Zhang, G.; Berardi, V., Economic statistical design of \(X\), Comput. Ind. Eng., 32, 575-586 (1997) · doi:10.1016/S0360-8352(96)00314-2
[28] Seif, A.; Sadeghifar, M., Non-dominated sorting genetic algorithm (NSGA-II) approach to the multi-objective economic statistical design of variable sampling interval \(T^2\), Hacet J. Math. Stat., 44, 203-214 (2015) · Zbl 1333.62311
[29] Khoo Yeong, W.; Yanjing, O., Economic-statistical design of the synthetic \(X\), Qual. Reliab. Eng. Int., 31, 863-876 (2015) · doi:10.1002/qre.1645
[30] Prabhu, S. S.; Mongomery, D. C.; Runger, G. C., Economic-statistical design of an adaptive \(X\), Int. J. Product. Econ., 49, 1-15 (1997) · doi:10.1016/S0925-5273(96)00100-4
[31] Yang, S. F.; Rahim, M. A., Economic statistical process control for multivariate quality characteristics under Weibull shock model, Int. J. Product. Econ., 98, 215-226 (2005) · doi:10.1016/j.ijpe.2004.05.014
[32] Faraz, A.; Saniga, E.; Kazemzadeh, R. B., Economic and economic statistical design of \(T^2\), J. Stat. Comput. Simul., 80, 1299-1316 (2009) · Zbl 1205.62202 · doi:10.1080/00949650903062574
[33] D. Karaboga, ‘‘An idea based on honey bee swarm for numerical optimization,’’ Tech. Report No. tr06 (Erciyes Univ., Eng. Faculty, Comput. Eng. Dep., 2005).
[34] Karaboga, D.; Akay, B., A comparative study of artificial bee colony algorithm, Appl. Math. Comput., 214, 108-132 (2009) · Zbl 1169.65053 · doi:10.1016/j.amc.2009.03.090
[35] Costa, A. F. B.; Rahim, M. A., Economic design of \(X\), J. Appl. Stat., 28, 875-885 (2001) · Zbl 1155.62488 · doi:10.1080/02664760120074951
[36] M. Tavakoli, R. Pourtaheri, and M. B. Moghadam, ‘‘Economic-statistical design of VSI hotelling’s \(T^2\) control chart using ABC algorithm,’’ in Proceedings of the 2nd National Industrial Mathematics Conference, Tabriz, Iran, 2015. · Zbl 07191969
[37] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optimiz., 39, 459-471 (2007) · Zbl 1149.90186 · doi:10.1007/s10898-007-9149-x
[38] Karaboga, D.; Basturk, B., On the performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput., 8, 687-697 (2008) · doi:10.1016/j.asoc.2007.05.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.