×

On differentiable local bounds preserving stabilization for Euler equations. (English) Zbl 1506.76064

Summary: This work presents the design of nonlinear stabilization techniques for the finite element discretization of Euler equations in both steady and transient form. Implicit time integration is used in the case of the transient form. A differentiable local bounds preserving method has been developed, which combines a Rusanov artificial diffusion operator and a differentiable shock detector. Nonlinear stabilization schemes are usually stiff and highly nonlinear. This issue is mitigated by the differentiability properties of the proposed method. Moreover, in order to further improve the nonlinear convergence, we also propose a continuation method for a subset of the stabilization parameters. The resulting method has been successfully applied to steady and transient problems with complex shock patterns. Numerical experiments show that it is able to provide sharp and well resolved shocks. The importance of the differentiability is assessed by comparing the new scheme with its non-differentiable counterpart. Numerical experiments suggest that, for up to moderate nonlinear tolerances, the method exhibits improved robustness and nonlinear convergence behavior for steady problems. In the case of transient problem, we also observe a reduction in the computational cost.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q31 Euler equations

Software:

BRENT; FEMPAR
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[2] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009) · Zbl 1227.76006
[3] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[4] Kritz, A.; Keyes, D., Fusion simulation project workshop report, J. Fusion Energy, 28, 1, 1-59 (2009)
[5] Kuzmin, D.; Löhner, R.; Turek, S., Flux-Corrected Transport (2005), Springer
[6] Kuzmin, D.; Möller, M., Algebraic flux correction I. Scalar conservation laws, (Kuzmin, D. D.; Löhner, P. R.; Turek, P. D.S., Flux-Corrected Transport. Flux-Corrected Transport, Scientific Computation (2005), Springer Berlin Heidelberg), 155-206 · Zbl 1094.76040
[7] Hoff, D., A finite difference scheme for a system of two conservation laws with artificial viscosity, Math. Comp., 33, 148, 1171 (1979) · Zbl 0447.65056
[8] Hoff, D., Invariant regions for systems of conservation laws, Trans. Amer. Math. Soc., 289, 2, 591 (1985) · Zbl 0535.35056
[9] Frid, H., Maps of convex sets and invariant regions for finite-difference systems of conservation laws, Arch. Ration. Mech. Anal., 160, 3, 245-269 (2001) · Zbl 0993.65096
[10] Guermond, J.-L.; Popov, B., Invariant domains and first-order continuous finite element approximation for hyperbolic systems, 1-22 (2015)
[11] Guermond, J.-L.; Popov, B.; Tomas, I., Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems (2018)
[12] Kuzmin, D., Monolithic convex limiting for continuous finite element discretizations of hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg., 361, Ls Iii, Article 112804 pp. (2020) · Zbl 1442.65263
[13] Kuzmin, D.; Möller, M.; Gurris, M., Algebraic flux correction II. Compressible flows, (Flux-Corrected Transport: Principles, Algorithms, and Applications (2012)), 193-238
[14] Lohmann, C.; Kuzmin, D., Synchronized flux limiting for gas dynamics variables, J. Comput. Phys., 326, 973-990 (2016) · Zbl 1373.76286
[15] Mabuza, S.; Shadid, J. N.; Kuzmin, D., Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems, J. Comput. Phys., 361, 82-110 (2018) · Zbl 1422.76128
[16] Mabuza, S.; Shadid, J. N.; Cyr, E. C.; Pawlowski, R. P.; Kuzmin, D., A linearity preserving nodal variation limiting algorithm for continuous Galerkin discretization of ideal MHD equations, J. Comput. Phys., 410, Article 109390 pp. (2020) · Zbl 1436.76030
[17] Kuzmin, D., Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes, J. Comput. Appl. Math., 236, 9, 2317-2337 (2012) · Zbl 1241.65083
[18] Badia, S.; Bonilla, J., Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization, Comput. Methods Appl. Mech. Engrg., 313, 133-158 (2017) · Zbl 1439.65104
[19] Badia, S.; Bonilla, J.; Hierro, A., Differentiable monotonicity-preserving schemes for discontinuous Galerkin methods on arbitrary meshes, Comput. Methods Appl. Mech. Engrg., 320, 582-605 (2017) · Zbl 1439.65105
[20] Bonilla, J.; Badia, S., Maximum-principle preserving space-time isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 354, 422-440 (2019) · Zbl 1441.65076
[21] Badia, S.; Martín, A. F.; Principe, J., FEMPAR: An object-oriented parallel finite element framework, Arch. Comput. Methods Eng., 25, 2, 195-271 (2018) · Zbl 1392.65005
[22] Badia, S.; Martín, A. F., A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0, Comput. Phys. Comm., 248, Article 107059 pp. (2020) · Zbl 07678485
[23] Feistauer, M.; Felcman, J.; Straškraba, I., Mathematical and Computational Methods for Compressible Flow, 535 (2003), Oxford University Press · Zbl 1028.76001
[24] Gurris, M., Implicit Finite Element Schemes for Compressible Gas and Particle-Laden Gas Flows (2009), Technische Universität Dortmund, (Ph.D. thesis)
[25] Fletcher, C., The group finite element formulation, Comput. Methods Appl. Mech. Engrg., 37, 2, 225-244 (1983)
[26] Barrenechea, G. R.; Knobloch, P., Analysis of a group finite element formulation, Appl. Numer. Math., 118, 238-248 (2017) · Zbl 1367.65141
[27] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[28] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 3-4, 325-342 (1993) · Zbl 0844.76048
[29] Kuzmin, D.; Turek, S., Flux correction tools for finite elements, J. Comput. Phys., 175, 2, 525-558 (2002) · Zbl 1028.76023
[30] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[31] Kuzmin, D.; Möller, M.; Turek, S., Multidimensional FEM-FCT schemes for arbitrary time stepping, Internat. J. Numer. Methods Fluids, 42, 265-295 (2003) · Zbl 1055.76029
[32] Lohner, R., Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods, Vol. 508, 0-523 (2004)
[33] Brent, R. P., Algorithms for Minimization Without Derivatives, 195 (1972), Prentice-Hall · Zbl 1009.90133
[34] Bonilla, J.; Mabuza, S.; Shadid, J. N.; Badia, S., On differentiable linearity and local bounds preserving stabilization methods for first order conservation law systems, (Cangi, A.; Parks, M. L., Center for Computing Research Summer Proceedings 2018 (2018), Sandia National Laboratories), 107-119
[35] Anderson, J. D., Modern Compressible Flow (1990), McGraw-Hill
[36] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 1-3, 141-219 (1991)
[37] Tezduyar, T. E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday. A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday, Comput. Methods Appl. Mech. Engrg., 195, 13-16, 1621-1632 (2006) · Zbl 1122.76061
[38] Singleton, R. J.; Israel, D. M.; Doebling, S. W.; Woods, C. N.; Kaul, A.; Walter, J. W.J.; Rogers, M. L., Exactpack documentation (2017), Los Alamos National Laboratory
[39] Kelley, C. T.; Keyes, D. E., Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal., 35, 2, 508-523 (1998) · Zbl 0911.65080
[40] Smith, T.; Hooper, R.; Ober, C.; Lorber, A.; Shadid, J., Comparison of operators for Newton-krylov method for solving compressible flows on unstructured meshes, (42nd AIAA Aerospace Sciences Meeting and Exhibit, Vol. 87 (2004), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Reston, Virigina)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.