×

Three-dimensional unstructured gridding for complex wells and geological features in subsurface reservoirs, with CVD-MPFA discretization performance. (English) Zbl 1506.74202

Summary: Grid generation for reservoir simulation, must honour classical key geological features and multilateral wells. The features to be honoured are classified into two groups; (1) involving layers, faults, pinchouts and fractures, and (2) involving well distributions. In the former, control-volume boundary aligned grids (BAGs) are required, while in the latter, control-point (defined as the centroid of the control-volume) well aligned grids (WAGs) are required. Depending on discretization method type and formulation, a choice of control-point and control-volume type is made, i.e. for a cell-centered method the primal grid cells act as control-volumes, otherwise for a vertex-centered method the dual-grid cells act as control-volumes. Novel three-dimensional unstructured grid generation methods are proposed that automate control-volume boundary alignment to geological features and control point alignment to complex wells, yielding essentially perpendicular bisector (PEBI) meshes either with respect to primal or dual-cells depending on grid type. Both grid types use tetrahedra, pyramids, prisms and hexahedra as grid elements. Primal-cell feature aligned grids are generated using special boundary surface protection techniques together with constrained cell-centered well trajectory alignment. Dual-cell feature aligned grids are generated from underlying primal-meshes, whereby features are protected such that dual-cell control-volume faces are aligned with interior feature boundaries, together with protected vertex-centered (control point) well trajectory alignment. The novel methods of grid generation presented enable practical application of both method types in 3-D for the first time. The primal and dual grids generated here demonstrate the gridding methods, and enable the first comparative performance study of cell-vertex versus cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent mesh resolution on challenging problems in 3-D. Pressure fields computed by the cell-centered and vertex-centered CVD-MPFA schemes are compared and contrasted relative to the respective degrees of freedom employed, and demonstrate the relative benefits of each approximation type. Stability limits of the methods are also explored. For a given mesh the cell-vertex method uses approximately a fifth of the unknowns used by a cell-centered method and proves to be the most beneficial with respect to accuracy and efficiency. Numerical results show that vertex-centered CVD-MPFA methods outperform cell-centered CVD-MPFA method.

MSC:

74L10 Soil and rock mechanics
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics

Software:

Voronoi
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sahimi, M.; Darvishi, R.; Haghighi, M.; Rasaei, M., Upscaled unstructured computational grids for efficient simulation of flow in fractured porous media, Transp. Porous Media, 83, 195-218 (2010)
[2] Mallison, B.; Sword, C.; Viard, T.; Milliken, W.; Cheng, A., Unstructured cut-cell grids for modeling complex reservoirs, SPEJ, 19, 02 (2014)
[3] S. Manzoor, M.G. Edwards, A.H. Dogru, T.M. Shaalan, Boundary aligned grid generation in three dimensions and CVD-MPFA discretization, in: SPE Reservoir Simulation Symposium, 23-25 February, 2015. · Zbl 1405.65160
[4] S. Manzoor, M.G. Edwards, A.H. Dogru, T.M. Al-Shaalan, 3D Geological feature honored cell-centered and vertex-centered unstructured grid generation, and CVD-MPFA performance, in: ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery, 2016. · Zbl 1405.65160
[5] Karimi-Fard, M.; Durlofsky, L. J., A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resour., 96, 354-372 (2016)
[6] V. Artus, D. Fructus, Olivier. Houzé, Simulation of deviated wells using 3D unstructured grids of flexible resolution, in: SPE RSC, Texas, USA (SPE-182645-MS), 20-22, 2017.
[7] Ø.S. Klemetsdal, R.L. Berge, K.A. Lie, H.M. Nilsen, O. Møyner, Unstructured gridding and consistent discretizations for reservoirs with faults and complex wells, in: SPE RSC, Texas, USA (SPE-182666-MS), 20-22, 2017.
[8] Samier, P.; Masson, R., Implementation of a vertex-centered method inside an industrial reservoir simulator: Practical issues and comprehensive comparison with corner-point grids and perpendicular-bisector-grid models on a field case, SPEJ, 22, 02 (2017)
[9] Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C., A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media, J. Comput. Phys., 352, 2018, 602-614 (2018)
[10] Berge, R. L.; Klemetsdal, Ø. S.; Lie, K., Unstructured voronoi grids conforming to lower dimensional objects, Comput. Geosci., 23, 169-188 (2019) · Zbl 1411.65155
[11] Feng, X.; Liao, X., Study on well spacing optimization in a tight sandstone gas reservoir based on dynamic analysis, ACS Omega, 5, 7, 3755-3762 (2020)
[12] Thompson, J. F.; Weatherill, N. P., Chapter: Fundamental concepts and approaches, (Thompson, J. F.; Soni, B. K.; Weatherill, N. P., Handbook of Grid Generation (1998))
[13] Hassan, O.; Probert, E.; Morgan, K.; Weatherill, N. P., Unsteady flow simulation using unstructured meshes, Comput. Methods Appl. Mech. Engrg., 189, 1247-1275 (2000) · Zbl 0992.76054
[14] Weatherill, N. P., Delaunay triangulation in computational fluid dynamics, Comput. Math. Appl., 24, 129-150 (1992) · Zbl 0761.76084
[15] Weatherill, N. P.; Hassan, O., Efficient three-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints, Internat. J. Numer. Methods Engrg., 37, 2005-2039 (1994) · Zbl 0806.76073
[16] Kallinderis, Y.; Khawaja, A.; McMorris, H., Hybrid prismatic/tetrahedral grid generation for complex 3-D geometries, AIAA J., 34, 1996, 291-298 (1996) · Zbl 0900.76488
[17] Aziz, K.; Settari, A., Use of irregular grid in reservoir simulation, SPE J., 12, 1972, 103-114 (1972)
[18] Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) · Zbl 0945.76049
[19] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3, 405-432 (2002) · Zbl 1094.76550
[20] Chen, Y.; Mallison, B. T.; Durlofsky, L. J., Nonlinear two-point flux approximation for modeling full-tensor effects in subsurface flow simulations, Comput. Geosci., 12, 317-335 (2008) · Zbl 1259.76041
[21] Karimi-Fard, M., Grid optimization to improve orthogonality of two-point flux approximation for unstructured 3D fractured reservoirs, (ECMOR-XI Conference (2008))
[22] Edwards, M. G.; Zheng, H., A quasi-positive family of continuous darcy-flux finite-volume schemes with full pressure support, J. Comput. Phys., 227, 9333-9364 (2008) · Zbl 1231.76178
[23] Edwards, M. G.; Zheng, H., Double-families of quasi-positive darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids, J. Comput. Phys., 229, 594-625 (2010) · Zbl 1253.76091
[24] Friis, H. A.; Edwards, M. G., A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids, J, Comput. Phys., 230, 1, 205-231 (2011) · Zbl 1427.76161
[25] Friis, H. A.; Edwards, M. G.; Mykkeltveit, J., Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids, SIAM J. Sci. Comput., 31, 1192-1220 (2008) · Zbl 1190.65163
[26] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, M., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput., 19, 1700-1716 (1998) · Zbl 0951.65080
[27] Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 5, 2082-2106 (2006) · Zbl 1121.76040
[28] Lee, S.; Durlofsky, L.; Lough, M.; Chen, W., Finite difference simulation of geologically complex reservoirs with tensor permeabilities, SPE Reserv. Eval. Eng., 1, 567-574 (1998)
[29] Edwards, M. G.; Zheng, H., Quasi M-matrix multifamily continuous darcy-flux approximations with full pressure support on structured and unstructured grids in three dimensions, SIAM J. Sci. Comput., 33, 455-487 (2011) · Zbl 1368.74070
[30] M.G. Edwards, H. Zheng, Quasi-positive anisotropic darcy-flux finite-volume approximation for general grids and MPFA decoupling analysis, in: Reservoir Simulation Symposium SPE, 2011.
[31] Löner, R.; Parikh, P., Three dimensional grid generation by advancing front method, Internat. J. Numer. Methods Fluids, 8, 1135-1149 (1988) · Zbl 0668.76035
[32] Marcum, D. L.; Weatherill, N. P., Unstructured grid generation using iterative point insertion and local reconnection, AIAA J., 33, 1619-1625 (1995) · Zbl 0851.76041
[33] Mavriplis, D. J., An advancing front delaunay triangulation algorithm designed for robustness, J. Comput. Phys., 117, 90-101 (1995) · Zbl 0815.68121
[34] George, P. L.; Borouchaki, H., (HERMES, Delaunay Triangulation - Delaunay Triangulation and Meshing Applications to Finite Elements, vol. 37 (1998)), 238 · Zbl 0908.65143
[35] Müller, J. D.; Roe, P. L.; Deconinck, H., A frontal approach for internal node generation in delaunay triangulations, Internat. J. Numer. Methods Fluids, 17, 3, 241-255 (1993) · Zbl 0780.76064
[36] Lee, D. T.; Schachter, B. J., Two algorithms for constructing a Delaunay triangulation, Int. J. Comput. Inf. Sci., 9, 3, 219-242 (1980) · Zbl 0441.68047
[37] Guibas, L.; Stolfi, J., Primitives for the manipulation of general subdivisions and the computation of voronoi, ACM Trans. Graph., 4, 2, 74-123 (1985) · Zbl 0586.68059
[38] Fortune, S., (Goodman, J. E.; O’Rourke, J., Voronoi Diagrams and Delaunay Triangulations. Voronoi Diagrams and Delaunay Triangulations, Handbook of Discrete and Computational Geometry (1997)), 377-388 · Zbl 0907.68190
[39] P. Su, R.L. Scot, A comparison of sequential Delaunay triangulation algorithms, in: Computational Geometry-11th ACM Symposium on Computational Geometry, 7(5-6), 1997, pp. 361-385. · Zbl 1133.68466
[40] Barth, T., Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, (Computational Fluid Dynamics No 1994-04 in Lecture Series (1994), von Karman Institute for Fluid Dynamics)
[41] Watson, D. F., Computing the n-dimensional delaunay tessellation with application to voronoi polytopes, Comput. J., 24, 2, 167-172 (1981)
[42] Green, P. J.; Sibson, R., Computing Dirichlet tessellations in the plane, Comput. J., 21, 2, 168-173 (1978) · Zbl 0377.52001
[43] Manzoor, S.; Edwards, M. G.; Dogru, A. H.; Shaalan, T. M., Interior boundary-aligned unstructured grid generation and cell-centered versus vertex-centered CVD-MPFA performance, Comput. Geosci., 22, 1, 195-230 (2018) · Zbl 1405.65160
[44] S. Manzoor, M.G. Edwards, A.H. Dogru, Three-dimensional geological boundary aligned unstructured grid generation, and CVD-MPFA flow computation, in: SPE 193874, Reservoir Simulation Conference, Galveston Texas USA, 10-11th 2019, 2019.
[45] Lawson, C., Properties of n-dimensional triangulations, Comput. Aided Geom. Design, 3, 231-246 (1986) · Zbl 0624.65018
[46] Contreras, D.; Hitschfeld-Kahler, N., Generation of polyhedral delaunay meshes, Procedia Eng., 82, 291-300 (2014)
[47] Laug, P.; Borouchaki, H., Curve linearization and discretization for meshing composite parametric surfaces, Commun. Numer. Methods. Eng., 20, 2004, 869-876 (2004) · Zbl 1061.65012
[48] Manzoor, S.; Edwards, M. G.; Dogru, A. H., Quasi-K-orthogonal grid generation, Soc. Petrol. Eng. (2019)
[49] Laug, P.; Borouchaki, H., High quality geometric meshing of CAD surfaces, (Quadros, W. R., Proceedings of the 20th International Meshing Roundtable (2011))
[50] Tremel, U.; Deister, F.; Hassan, O.; Weatherill, N. P., Automatic unstructured surface mesh generation for complex configurations, Internat. J. Numer. Methods Fluids, 45, 2004, 341-364 (2004) · Zbl 1072.76056
[51] Frey, P.; George, P., Surface Meshing and Re-Meshing. Mesh Generation: Application to Finite Elements (Inbook), 491-523 (2008), ISTE Ltd and John Wiley & Sons, Ltd · Zbl 1156.65018
[52] Chew, L., Constrained delaunay triangulations, Algorithmica, 4, 1989, 97-108 (1989) · Zbl 0664.68042
[53] Liu, Y.; Lo, S.; Z. Q.Guan, O.; Zhang, H. W., Boundary recovery for 3D delaunay triangulation, Finite Elem. Anal. Des., 84, 2014, 32-43 (2014)
[54] Sazonov, I.; Wang, D.; Hassan, O.; Morgan, K.; Weatherill, N. P., A stitching method for the generation of unstructured meshes for use with co-volume solution techniques, Comput. Methods Appl. Mech. Engrg., 195, 1316, 1826-1845 (2006) · Zbl 1119.65118
[55] S. Manzoor, M.G. Edwards, A.H. Dogru, Acute boundary aligned unstructured grid generation and consistent flux approximations, in: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery, 2018.
[56] Sloan, S. A., Fast algorithm for generating constrained delaunay triangulations, Comput. Struct., 47, 441-450 (1993) · Zbl 0808.65149
[57] Rourke, J. O’., (Hopcroft, J. E.; Plotkin, G. D.; Schwartz, J.; Scott, D.; Vuillemin, J., Art Gallery Theorems and Algorithms. Three Dimensions and Miscellany (1987), Oxford University Press), 253-254
[58] George, P.; Borouchaki, H.; Frey, P.; Laug, P.; Saltel, E., Mesh Generation and Mesh Adaptivity: Theory and Techniques Encyclopedia of Computational Mechanics (2004), John Wiley & Sons Ltd
[59] Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A.H.; Pal, M., Control volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model, J. Comput. Phys., 284, 462-489 (2015) · Zbl 1351.74073
[60] Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A.H.; Pal, M., Three-dimensional control volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model, J. Comput. Phys., 303, 470-497 (2015) · Zbl 1349.74343
[61] Keilegavlen, E.; Aavatsmark, I., Monotonicity for MPFA methods on triangular grids, Comput. Geosci., 15, 3-16 (2011) · Zbl 1333.76084
[62] Pal, M.; Edwards, M. G., A family of multi-point flux approximation schemes for general element types in two and three dimensions with convergence performance, Internat. J. Numer. Methods Fluids, 69, 11, 1797-1817 (2012) · Zbl 1253.76125
[63] Nilsen, H. M.; Natvig, J. R.; Lie, K.-A., Accurate modeling of faults by multipoint, mimetic, and mixed methods, SPE J., 17, 02 (2012)
[64] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Minimal stencil finite volume scheme with the discrete maximum principle, Russian J. Numer. Anal. Math. Modelling, 27, 4, 369-385 (2012) · Zbl 1262.65151
[65] Forsyth, P., A control-volume finite element method for local mesh refinement in thermal reservoir simulation, SPE Reservoir Eng., SPE-18415-PA (1990)
[66] Matthai, S.; Mezentsev, A. A.; Belayneh, M., Finite element-node-centered finite-volume two-phase-flow experiments with fractured rock represented by unstructured hybrid-element meshes, SPE Reserv. Eval. Eng., 10, 6, 740-756 (2007)
[67] Edwards, M. G., Higher-resolution hyperbolic-coupled-elliptic flux-continuous CVD schemes on structured and unstructured grids in 3-D, Internat. J. Numer. Methods Fluids, 51, 1079-1095 (2006) · Zbl 1158.76364
[68] Arnold, D., Mixed finite element methods for elliptic problems, Comput. Methods Appl. Mech. Engrg., 28, 1-300 (1990) · Zbl 0729.73198
[69] Russell, T.; Wheeler, M., The mathematics of reservoir simulation finite element and finite difference methods for continuous flows in porous media, Front. Appl. Math. SIAM, 3, 5-106 (1984)
[70] Chen, H.; Kou, J.; Sun, S.; Zhang, T., Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media, Comput. Methods Appl. Mech. Engrg., 350, 641-663 (2019) · Zbl 1441.76057
[71] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[72] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) · Zbl 1352.65420
[73] Diskin, B.; Thomas, J.; Nielsen, E.; White, J.; Nishikawa, H., Comparison of node-centered and cell-centered unstructured finite-volume discretizations. Part I: Viscous fluxes (2009)
[74] Hægland, H.; Assteerawatt, A.; Dahle, H.; Eigestad, G.; Helmig, R., Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system, Adv. Water Resour., 32, 1740-1755 (2009)
[75] Pal, M.; Edwards, M. G., Q-families of CVD(MPFA) schemes on general elements: Numerical convergence and the maximum principle, Arch. Comput. Methods Eng., 17, 137-189 (2010) · Zbl 1269.76075
[76] Verma, S. K., Flexible Grids for Reservoir Simulation (1996), Stanford University, (Ph.D. thesis)
[77] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[78] Moyner, O.; Lie, K.-A., A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, J. Comput. Phys., 304, 2015, 46-71 (2015) · Zbl 1349.76824
[79] Parramore, E.; Edwards, M. G.; Pal, M.; Lamine, S., Multiscale finite-volume CVD-MPFA formulations on structured and unstructured grids, SIAM Multiscale Model. Simul., 14, 2, 559-594 (2016) · Zbl 1381.76224
[80] deSouza, A. C.R.; Barbosa, L. M.C.; Contreras, F. R.L.; Lyra, P. R.; deCarvalho, D., A multiscale control volume framework using the multiscale restriction smooth basis and a non-orthodox multi-point flux approximation for the simulation of two-phase flows on truly unstructured grids, J. Pet. Sci. Eng., 188 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.