×

A fully-coupled computational framework for large-scale simulation of fluid-driven fracture propagation on parallel computers. (English) Zbl 1506.74106

Summary: The propagation of cracks driven by a pressurized fluid emerges in several areas of engineering, including structural, geotechnical, and petroleum engineering. In this paper, we present a robust numerical framework to simulate fluid-driven fracture propagation that addresses the challenges emerging in the simulation of this complex coupled nonlinear hydro-mechanical response. We observe that the numerical difficulties stem from the strong nonlinearities present in the fluid equations as well as those associated with crack propagation, from the quasi-static nature of the problem, and from the a priori unknown and potentially intricate crack geometries that may arise. An additional challenge is the need for large scale simulation owing to the mesh resolution requirements and the expected 3D character of the problem in practical applications. To address these challenges we model crack propagation with a high-order hybrid discontinuous Galerkin/cohesive zone model framework, which has proven massive scalability properties, and we model the lubrication flow inside the propagating cracks using continuous finite elements, furnishing a fully-coupled discretization of the solid and fluid equations. We find that a conventional Newton-Raphson solution algorithm is robust even in the presence of crack propagation. The parallel approach for solving the linearized coupled problem consists of standard iterative solvers based on domain decomposition. The resulting computational approach provides the ability to conduct highly-resolved and quasi-static simulations of fluid-driven fracture propagation with unspecified crack path. We conduct a series of numerical tests to verify the computational framework against known analytical solutions in the toughness and viscosity dominated regimes and we demonstrate its performance in terms of robustness and parallel scalability, enabling simulations of several million degrees of freedom on hundreds of processors.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65D99 Numerical approximation and computational geometry (primarily algorithms)
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation

Software:

PETSc; METIS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lecampion, B.; Bunger, A.; Zhang, X., Numerical methods for hydraulic fracture propagation: a review of recent trends, J. Nat. Gas Sci. Eng., 49, 66-83 (2017)
[2] Economides, M.; Nolte, K., Reservoir Stimulation (2000), John Wiley & Sons: John Wiley & Sons Chichester, UK
[3] S. Khristianovich, Y. Zheltov, Formation of vertical fractures by means of highly viscous liquid, in: Proceedings Fourth World Petroleum Congress, Section II/T.O.P., Paper 3, Rome, 1955, pp. 579-586.
[4] Geertsma, J.; de Klerk, F., A rapid method of predicting width and extent of hydraulically induced fractures, J. Pet. Technol., 21, 12, 1571-1581 (1969)
[5] Adachi, J. I., Fluid-Driven Fracture in Permeable Rock (2001), University of Minnesota, (Ph.D. thesis)
[6] Adachi, J. I.; Detournay, E., Self-similar solution of a plane-strain fracture driven by a power-law fluid, Int. J. Numer. Anal. Methods Geomech., 26, 6, 579-604 (2002) · Zbl 1064.74148
[7] Detournay, E., Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 35-45 (2004)
[8] Garagash, D.; Detournay, E., Plane-strain propagation of a fluid-driven fracture: Small toughness solution, J. Appl. Mech., 72, 6, 916-928 (2005) · Zbl 1111.74411
[9] Bunger, A. P.; Detournay, E.; Garagash, D. I., Toughness-dominated hydraulic fracture with leak-off, Int. J. Fract., 134, 175-190 (2005) · Zbl 1148.74336
[10] Adachi, J. I.; Detournay, E., Plane strain propagation of a hydraulic fracture in a permeable rock, Eng. Fract. Mech., 75, 16, 4666-4694 (2008)
[11] Boone, T.; Ingraffea, A., A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media, Int. J. Numer. Anal. Methods Geomech., 14, 27-47 (1990)
[12] Carrier, B.; Granet, S., Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312-328 (2012)
[13] Settgast, R. R.; Fu, P.; Walsh, S. D.C.; White, J. A.; Annavarapu, C.; Ryerson, F. J., A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41, 627-653 (2017)
[14] Chen, Z.; Bunger, A.; Zhang, X.; Jeffrey, R. G., Cohesive zone finite element-based modeling of hydraulic fractures, cActa Mech. Solida Sin., 22, 443-452 (2009)
[15] Sarris, E.; Papanastasiou, P., The influence of the cohesive process zone in hydraulic fracturing modelling, Int. J. Fract., 167, 33-45 (2011) · Zbl 1282.74081
[16] Hunsweck, M. J.; Shen, Y.; Lew, A. J., A finite element approach to the simulation of hydraulic fractures with lag, Int. J. Numer. Anal. Methods Geomech., 37, 9, 993-1015 (2013)
[17] Belytschko, T.; Black, T., Elastic crack growth in finite element with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 5, 601-620 (1999) · Zbl 0943.74061
[18] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[19] Khoei, A.; Hirmand, M.; Vahab, M.; Bazargan, M., An enriched fem technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations, Internat. J. Numer. Methods Engrg., 104, 439-468 (2015) · Zbl 1352.74185
[20] Mohammadnejad, T.; Andrade, J., Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in-situ stress estimation, Int. J. Numer. Anal. Methods Geomech., 40, 2033-2060 (2016)
[21] Gordeliy, E.; Peirce, A., Coupling schemes for modeling hydraulic fracture propagation using the xfem, Comput. Methods Appl. Mech. Engrg., 253, 305-322 (2013) · Zbl 1297.74104
[22] Gupta, P.; Duarte, C. A., Simulation of non-planar three-dimensional hydraulic fracture propagation, Int. J. Numer. Anal. Methods Geomech., 38, 1397-1430 (2014)
[23] Gupta, P.; Duarte, C. A., Coupled formulation and algorithms for the simulation of non-planar three-dimensional hydraulic fractures using the generalized finite element method, Int. J. Numer. Anal. Methods Geomech., 40, 1402-1437 (2016)
[24] Gupta, P.; Duarte, C. A., Coupled hydromechanical-fracture simulations of nonplanar three-dimensional hydraulic fracture propagation, Int. J. Numer. Anal. Methods Geomech., 42, 1, 143-180 (2018)
[25] Karihaloo, B. L.; Xiao, Q. Z., Modelling of stationary and growing cracks in FE framework without remeshing: A state-of-the-art review, Comput. Struct., 81, 3, 119-129 (2003)
[26] Radovitzky, R.; Seagraves, A.; Tupek, M.; Noels, L., A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous galerkin, cohesive element method, Comput. Methods Appl. Mech. Engrg., 200, 326-344 (2011) · Zbl 1225.74105
[27] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342 (1998) · Zbl 0966.74060
[28] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[29] Bourdin, B., The variational formulation of brittle fracture: numerical implementation and extensions, IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 381-393 (2007) · Zbl 1209.74036
[30] Wheeler, M. F.; Wick, T.; Wollner, W., An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[31] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 43-62 (2013) · Zbl 1352.74029
[32] Wilson, Z.; Landis, C., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020
[33] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2015) · Zbl 1425.74423
[34] Mikelić, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, Multisc. Model. Simul., 13, 1, 367-398 (2012) · Zbl 1317.74028
[35] Lee, S.; Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Engrg., 312, 509-541 (2016) · Zbl 1439.74359
[36] van Duijn, C.; Mikelic, A.; Wick, T., A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium, Math. Mech. Solids, 24, 5 (2018)
[37] Giovanardi, B.; Scotti, A.; Formaggia, L., A hybrid xfem -phase field (xfield) method for crack propagation in brittle elastic materials, Comput. Methods Appl. Mech. Engrg., 320, 396-420 (2017) · Zbl 1439.74350
[38] Seagraves, A.; Radovitzky, R., Large-scale 3D modeling of projectile impact damage in brittle plates, J. Mech. Phys. Solids, 83, 48-71 (2015)
[39] Serebrinsky, S. A.; Sánchez, M.; Smilovich, D., Desarrollo y validación de un simulador de fracturamiento hidráulico orientado al petróleo y gas, (Congreso Sobre MÉtodos NumÉricos Y Sus Aplicaciones, Vol. XXXIV (2016)), 8-11
[40] Hirmand, M.; Vahab, M.; Papoulia, K.; Khalili, N., Robust simulation of dynamic fluid-driven fracture in naturally fractured impermeable media, Comput. Methods Appl. Mech. Engrg., 357, Article 112574 pp. (2019) · Zbl 1442.74204
[41] Vahab, M.; Khalili, N., Computational algorithm for the anticipation of the fluid-lag zone in hydraulic fracturing treatments, Int. J. Geomech., 18, 10, 1-15 (2018)
[42] Zhang, X.; Jeffrey, R. G.; Thiercelin, M., Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries, J. Geophys. Res.: Solid Earth, 114, 12, 1-16 (2009)
[43] Chen, Z. R., Finite element modelling of viscosity-dominated hydraulic fractures, J. Pet. Sci. Eng., 88-89, 136-144 (2012)
[44] Chen, Z., An ABAQUS implementation of the XFEM for hydraulic fracture problems, (Effective and Sustainable Hydraulic Fracturing (2013), InTech), 725-739, (Chapter 36)
[45] Chuprakov, D.; Melchaeva, O.; Prioul, R., Hydraulic fracture propagation across a weak discontinuity controlled by fluid injection, (Effective and Sustainable Hydraulic Fracturing (2013), IntechOpen), (Chapter 8)
[46] C. Chukwudozie, B. Bourdin, K. Yoshioka, A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses, in: Proceedings of 38th Stanford Geothermal Workshop, 2013.
[47] Detournay, E., Mechanics of hydraulic fractures, Annu. Rev. Fluid Mech., 48, 1, 311-339 (2016) · Zbl 1356.74181
[48] Lecampion, B.; Detournay, E., An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag, Comput. Methods Appl. Mech. Engrg., 196, 4863-4880 (2007) · Zbl 1173.74383
[49] Garagash, D. I.; Detournay, E., The tip region of a fluid-driven fracture in an elastic medium, J. Appl. Mech., 67, 1, 183-192 (1999) · Zbl 1110.74448
[50] Garagash, D. I., Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution, Int. J. Solids Struct., 43, 18-19, 5811-5835 (2006) · Zbl 1120.74752
[51] Garagash, D. I., Cohesive-zone effects in hydraulic fracture propagation, J. Mech. Phys. Solids, Article 103727 pp. (2019)
[52] Howard, G.; Fast, C., Optimum fluid characteristics for fracture extension, Proc. Amer. Pet. Inst., 261-270 (1957)
[53] Giovanardi, B.; Formaggia, L.; Scotti, A.; Zunino, P., Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium, Lect. Notes Comput. Sci. Eng., 121 (2018)
[54] Barenblatt, G., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
[55] Barenblatt, G. I., The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. axially-symmetric cracks., J. Appl. Math. Mech., 23, 3, 622-636 (1959) · Zbl 0095.39202
[56] Camacho, G.; Ortiz, M., Computational modeling of impact damage in brittle materials, Int. J. Solids Struct., 33, 20-22, 2899-2983 (1996) · Zbl 0929.74101
[57] Noels, L.; Radovitzky, R., A general discontinuous galerkin method for finite hyperelasticity. formulation and numerical applications, Internat. J. Numer. Methods Engrg., 68, 1, 64-97 (2006) · Zbl 1145.74039
[58] Noels, L.; Radovitzky, R., An explicit discontinuous galerkin method for non-linear solid dynamics. formulation, parallel implementation and scalability properties., Internat. J. Numer. Methods Engrg., 74, 9, 1393-1420 (2007) · Zbl 1158.74496
[59] Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J., Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci., 44, 5, 739-757 (2007)
[60] Karypis, G.; Kumar, V., MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0 (2009), University of Minnesota: University of Minnesota Minneapolis, MN, http://www.cs.umn.edu/ metis
[61] Balay, S.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W.; Karpeyev, D.; Kaushik, D.; Knepley, M.; McInnes, L. C.; Smith, B.; Zampini, S.; Zhang, H., PETSc Users ManualTech. Rep. ANL-95/11 - Revi-sion 3.7 (2016), Argonne National Laboratory
[62] Detournay, E., Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 1, 35-45 (2004)
[63] Irwin, G., Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, 361-364 (1957)
[64] D. Garagash, Hydraulic fracture propagation in elastic rock with large toughness, in: Proc. 4th North American Rock Mechanics Symp., 2000, pp. 221-228.
[65] Savitski, A.; Detournay, E., Propagation of a penny-shape hydraulic fracture in an impermeable rock, Int. J. Solids Struct., 39, 6311-6337 (2002) · Zbl 1032.74640
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.