×

A projective transformation-based topology optimization using moving morphable components. (English) Zbl 1506.74305

Summary: The moving morphable components (MMC)-based topology optimization method makes it possible to directly connect theoretical designs to computer-aided design (CAD) systems. To improve the manufacturability of the optimal result, this paper proposes a projective transformation-based topology optimization using moving morphable components (PMMC), which can reduce the performance loss when the optimized design is ported to practical manufacturing. The basic idea is to treat an arbitrary component as a projection of a component template independent of design variables. A hierarchical feature construction method is used to reconstruct the internal details within an element while reducing the interpolation error, in order to achieve a high-precision feature representation and sensitivity analysis that are not affected by the quality of the background mesh. The proposed method not only ensures the consistency of the geometric model and the analysis model, but also flexibly addresses components that are difficult to describe explicitly. The effectiveness of the proposed method is verified through a series of numerical examples.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

top.m; top88.m; PETSc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[2] Hassani, B.; Hinton, E., A review of homogenization and topology optimization I—homogenization theory for media with periodic structure, Comput. Struct., 69, 6, 707-717 (1998) · Zbl 0948.74048
[3] Sigmund, O., On the design of compliant mechanisms using topology optimization, J. Struct. Mech., 25, 4, 493-524 (1997)
[4] Zhu, B.; Zhang, X.; Zhang, H.; Liang, J.; Zang, H.; Li, H.; Wang, R., Design of compliant mechanisms using continuum topology optimization: A review, Mech. Mach. Theory, 143, Article 103622 pp. (2020)
[5] Liu, M.; Zhan, J.; Zhu, B.; Zhang, X., Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness, Mech. Mach. Theory, 146, Article 103728 pp. (2020)
[6] Jensen, J. S.; Sigmund, O., Topology optimization for nano-photonics, Laser Photonics Rev., 5, 2, 308-321 (2011)
[7] Wang, N.; Guo, H.; Chen, B.; Cui, C.; Zhang, X., Integrated design of actuation and mechanism of dielectric elastomers using topology optimization based on fat Bezier curves, Soft Robot. (2019)
[8] Zhang, H.; Kumar, A. S.; Fuh, J. Y.H.; Wang, M. Y., Design and development of a topology-optimized three-dimensional printed soft gripper, Soft Robot., 5, 5, 650-661 (2018)
[9] Dühring, M. B.; Jensen, J. S.; Sigmund, O., Acoustic design by topology optimization, J. Sound Vib., 317, 3-5, 557-575 (2008)
[10] Dilgen, C. B.; Dilgen, S. B.; Aage, N.; Jensen, J. S., Topology optimization of acoustic mechanical interaction problems: A comparative review, Struct. Multidiscip. Optim., 1-23 (2019)
[11] Petersson, J.; Borrvall, T., Topology optimization of fluids in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 77-107 (2003) · Zbl 1025.76007
[12] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013)
[13] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: Post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[14] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2013), Springer Science & Business Media · Zbl 1059.74001
[15] Liu, K.; Tovar, A., An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. Optim., 50, 6, 1175-1196 (2014)
[16] Wang, F.; Lazarov, B. S.; Sigmund, O.; Jensen, J. S., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Engrg., 276, 453-472 (2014) · Zbl 1423.74768
[17] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1, 227-246 (2003) · Zbl 1083.74573
[18] Zhu, B.; Zhang, X.; Fatikow, S., Structural topology and shape optimization using a level set method with distance-suppression scheme, Comput. Methods Appl. Mech. Engrg., 283, 1214-1239 (2015) · Zbl 1423.74779
[19] van Dijk, N. P.; Maute, K.; Langelaar, M.; Van Keulen, F., Level-set methods for structural topology optimization: A review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[20] Tanskanen, P., The evolutionary structural optimization method: Theoretical aspects, Comput. Methods Appl. Mech. Engrg., 191, 47-48, 5485-5498 (2002) · Zbl 1083.74572
[21] Huang, X.; Xie, Y.-M., A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim., 41, 5, 671-683 (2010)
[22] Zhang, W.; Yuan, J.; Zhang, J.; Guo, X., A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53, 6, 1243-1260 (2016)
[23] Zhang, W.; Chen, J.; Zhu, X.; Zhou, J.; Xue, D.; Lei, X.; Guo, X., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 322, 590-614 (2017) · Zbl 1439.74311
[24] Shapiro, V.; Farin, G., Handbook of Computer Aided Geometric Design, 50021-50026 (2002) · Zbl 1003.68179
[25] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[26] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011) · Zbl 1274.74310
[27] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[28] Wei, P.; Wang, M. Y.; Xing, X., A study on X-FEM in continuum structural optimization using a level set model, Comput. Aided Des., 42, 8, 708-719 (2010)
[29] Kreissl, S.; Maute, K., Levelset based fluid topology optimization using the extended finite element method, Struct. Multidiscip. Optim., 46, 3, 311-326 (2012) · Zbl 1274.76251
[30] Wang, Y.; Benson, D. J., Isogeometric analysis for parameterized LSM-based structural topology optimization, Comput. Mech., 57, 1, 19-35 (2016) · Zbl 1381.74212
[31] Groen, J. P.; Langelaar, M.; Sigmund, O.; Ruess, M., Higher-order multi-resolution topology optimization using the finite cell method, Internat. J. Numer. Methods Engrg., 110, 10, 903-920 (2017)
[32] Cai, S.; Zhang, W.; Zhu, J.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[33] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 6, 767-784 (2011) · Zbl 1274.74409
[34] Zhou, M.; Lazarov, B. S.; Wang, F.; Sigmund, O., Minimum length scale in topology optimization by geometric constraints, Comput. Methods Appl. Mech. Engrg., 293, 266-282 (2015) · Zbl 1423.74778
[35] Carstensen, J. V.; Guest, J. K., Projection-based two-phase minimum and maximum length scale control in topology optimization, Struct. Multidiscip. Optim., 58, 5, 1845-1860 (2018)
[36] Zhou, P.; Du, J.; Lü, Z., Highly efficient density-based topology optimization using DCT-based digital image compression, Struct. Multidiscip. Optim., 57, 1, 463-467 (2018)
[37] Luo, Y.; Bao, J., A material-field series-expansion method for topology optimization of continuum structures, Comput. Struct., 225, Article 106122 pp. (2019)
[38] Aage, N.; Andreassen, E.; Lazarov, B. S., Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework, Struct. Multidiscip. Optim., 51, 3, 565-572 (2015)
[39] Liu, H.; Hu, Y.; Zhu, B.; Matusik, W.; Sifakis, E., Narrow-band topology optimization on a sparsely populated grid, ACM Trans. Graph., 37, 6, 1-14 (2018)
[40] Chen, Q.; Zhang, X.; Zhu, B., A 213-line topology optimization code for geometrically nonlinear structures, Struct. Multidiscip. Optim., 1-17 (2018)
[41] Guo, X.; Zhang, W.; Zhong, W., Explicit feature control in structural topology optimization via level set method, Comput. Methods Appl. Mech. Engrg., 272, 354-378 (2014) · Zbl 1296.74081
[42] Norato, J.; Bell, B.; Tortorelli, D. A., A geometry projection method for continuum-based topology optimization with discrete elements, Comput. Methods Appl. Mech. Engrg., 293, 306-327 (2015) · Zbl 1423.74756
[43] Zhou, Y.; Zhang, W.; Zhu, J.; Xu, Z., Feature-driven topology optimization method with signed distance function, Comput. Methods Appl. Mech. Engrg., 310, 1-32 (2016) · Zbl 1439.74315
[44] Hoang, V.-N.; Jang, G.-W., Topology optimization using moving morphable bars for versatile thickness control, Comput. Methods Appl. Mech. Engrg., 317, 153-173 (2017) · Zbl 1439.74274
[45] Coniglio, S.; Morlier, J.; Gogu, C.; Amargier, R., Generalized geometry projection: A unified approach for geometric feature based topology optimization, Arch. Comput. Methods Eng., 1-38 (2019)
[46] Zhang, W.; Li, D.; Zhang, J.; Guo, X., Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Engrg., 311, 327-355 (2016) · Zbl 1439.74312
[47] Wang, R.; Zhang, X.; Zhu, B., Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method, Comput. Methods Appl. Mech. Engrg., 351, 667-693 (2019) · Zbl 1441.74173
[48] Nguyen, H.-D.; Hoang, V.-N.; Jang, G.-W., Moving morphable patches for three-dimensional topology optimization with thickness control, Comput. Methods Appl. Mech. Engrg., 368, Article 113186 pp. (2020) · Zbl 1506.74292
[49] Hou, W.; Gai, Y.; Zhu, X.; Wang, X.; Zhao, C.; Xu, L.; Jiang, K.; Hu, P., Explicit isogeometric topology optimization using moving morphable components, Comput. Methods Appl. Mech. Engrg., 326, 694-712 (2017) · Zbl 1439.74275
[50] Xie, X.; Wang, S.; Xu, M.; Jiang, N.; Wang, Y., A hierarchical spline based isogeometric topology optimization using moving morphable components, Comput. Methods Appl. Mech. Engrg., 360, Article 112696 pp. (2020) · Zbl 1441.74177
[51] Zhang, W.; Li, D.; Kang, P.; Guo, X.; Youn, S.-K., Explicit topology optimization using IGA-based moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 360, Article 112685 pp. (2020) · Zbl 1441.74182
[52] Zhu, B.; Chen, Q.; Wang, R.; Zhang, X., Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity, J. Mech. Des., 140, 8 (2018)
[53] Takalloozadeh, M.; Yoon, G. H., Implementation of topological derivative in the moving morphable components approach, Finite Elem. Anal. Des., 134, 16-26 (2017)
[54] Zhang, W.; Zhou, L., Topology optimization of self-supporting structures with polygon features for additive manufacturing, Comput. Methods Appl. Mech. Engrg., 334, 56-78 (2018) · Zbl 1440.74455
[55] Bai, J.; Zuo, W., Hollow structural design in topology optimization via moving morphable component method, Struct. Multidiscip. Optim., 61, 1, 187-205 (2020)
[56] Sun, J.; Tian, Q.; Hu, H., Topology optimization of a three-dimensional flexible multibody system via moving morphable components, J. Comput. Nonlinear Dyn., 13, 2 (2018)
[57] Hartley, R.; Zisserman, A., Multiple View Geometry in Computer Vision (2003), Cambridge university press
[58] Moumnassi, M.; Belouettar, S.; Béchet, É.; Bordas, S. P.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 774-796 (2011) · Zbl 1225.65111
[59] Zhou, M.; Wang, M. Y., Engineering feature design for level set based structural optimization, Comput. Aided Des., 45, 12, 1524-1537 (2013)
[60] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Internat. J. Numer. Methods Engrg., 48, 12, 1741-1760 (2000) · Zbl 0989.74066
[61] Zhang, W.; Song, J.; Zhou, J.; Du, Z.; Zhu, Y.; Sun, Z.; Guo, X., Topology optimization with multiple materials via moving morphable component (MMC) method, Internat. J. Numer. Methods Engrg., 113, 11, 1653-1675 (2018)
[62] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[63] Li, L.; Wang, M. Y.; Wei, P., XFEM schemes for level set based structural optimization, Front. Mech. Eng., 7, 4, 335-356 (2012)
[64] Wein, F.; Dunning, P. D.; Norato, J. A., A review on feature-mapping methods for structural optimization, Struct. Multidiscip. Optim., 1-42 (2020)
[65] Makhija, D.; Maute, K., Numerical instabilities in level set topology optimization with the extended finite element method, Struct. Multidiscip. Optim., 49, 2, 185-197 (2014)
[66] Aragon, A. M.; Liang, B.; Ahmadian, H.; Soghrati, S., On the stability and interpolating properties of the hierarchical interface-enriched finite element method, Comput. Methods Appl. Mech. Engrg., 362, Article 112671 pp. (2020) · Zbl 1439.65143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.