×

Sensitivity-based link addition for robust linear dynamical networks. (English) Zbl 1464.93019

Summary: A link addition problem is considered for a directed linear network in order to improve the network robustness. The robustness of network is quantified through a well-known measure of stability margin. Optimal identification of links such that the stability margin is maximized by their addition, requires solving a complex combinatorial problem. Here two efficient methods are proposed for suboptimal link addition by exploiting the sensitivity being embedded in the derivative of singular value and Lagrange multiplier. Numerical tests are presented to demonstrate the efficacy of the proposed methods.

MSC:

93B35 Sensitivity (robustness)
93B70 Networked control
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bertsekas, D. P., Nonlinear programming, J. Oper. Res. Soc., 48, 3, 334 (1997)
[2] Bhusal, R.; Taner, B.; Subbarao, K., On the phase margin of networked dynamical systems and fabricated attacks of an intruder, Proceedings of the American Control Conference (ACC), 3279-3284 (2020), IEEE
[3] With contributions by J. Cortes, F. Dorfler, and S. Martinez
[4] Chen, X.; Pequito, S.; Pappas, G. J.; Preciado, V. M., Minimal edge addition for network controllability, IEEE Trans. Control Netw. Syst., 6, 1, 312-323 (2018) · Zbl 1515.93035
[5] Cremean, L. B.; Murray, R. M., Stability analysis of interconnected nonlinear systems under matrix feedback, Proceedings of the 42nd IEEE Conference on Decision and Control, 3, 3078-3083 (2003), IEEE
[6] Fax, J. A.; Murray, R. M., Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49, 9, 1465-1476 (2004) · Zbl 1365.90056
[7] Franklin, G. F.; Powell, J. D.; Emami-Naeini, A.; Sanjay, H., Feedback Control of Dynamic Systems (2015), Pearson London
[8] Freudenberg, J. S.; Looze, D. P.; Cruz, J. B., Robustness analysis using singular value sensitivities, Int. J. Control, 35, 1, 95-116 (1982) · Zbl 0473.93031
[9] Ghosh, A.; Boyd, S., Growing well-connected graphs, Proceedings of the 45th IEEE Conference on Decision and Control, 6605-6611 (2006), IEEE
[10] Hassan-Moghaddam, S.; Jovanović, M. R., Topology design for stochastically forced consensus networks, IEEE Trans. Control Netw. Syst., 5, 3, 1075-1086 (2017) · Zbl 1515.93090
[11] Hogben, L., Handbook of Linear Algebra (2013), CRC Press
[12] Kim, Y., Bisection algorithm of increasing algebraic connectivity by adding an edge, IEEE Trans. Autom. Control, 55, 1, 170-174 (2010) · Zbl 1368.05146
[13] Kim, Y., Efficient identification of link importance in dynamic networks, J. Frankl. Inst., 352, 9, 3716-3729 (2015) · Zbl 1395.93179
[14] Kim, Y., On the stability margin of networked dynamical systems, IEEE Trans. Autom. Control, 62, 10, 5451-5456 (2017) · Zbl 1390.93663
[15] Koh, M. H.; Sipahi, R., Effects of edge elimination on the delay margin of a class of LTI consensus dynamics, IEEE Trans. Autom. Control, 63, 12, 4397-4404 (2018) · Zbl 1423.34083
[16] Lafferriere, G.; Williams, A.; Caughman, J.; Veerman, J., Decentralized control of vehicle formations, Syst. Control Lett., 54, 9, 899-910 (2005) · Zbl 1129.93303
[17] Lavretsky, E.; Wise, K. A., Robust and Adaptive Control with Aerospace Applications (2013), Springer London · Zbl 1254.93001
[18] Lehtomaki, N.; Sandell, N.; Athans, M., Robustness results in linear-quadratic gaussian based multivariable control designs, IEEE Trans. Autom. Control, 26, 1, 75-93 (1981) · Zbl 0459.93024
[19] Li, H.; Patterson, S.; Yi, Y.; Zhang, Z., Maximizing the number of spanning trees in a connected graph, IEEE Trans. Inf. Theory (2019)
[20] Li, Z.; Chen, J., Robust consensus of linear feedback protocols over uncertain network graphs, IEEE Trans. Autom. Control, 62, 8, 4251-4258 (2017) · Zbl 1373.93021
[21] Lin, F.; Fardad, M.; Jovanovic, M. R., Augmented lagrangian approach to design of structured optimal state feedback gains, IEEE Trans. Autom. Control, 56, 12, 2923-2929 (2011) · Zbl 1368.93221
[22] Lofberg, J., Yalmip: a toolbox for modeling and optimization in matlab, Proceedings of the IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), 284-289 (2004), IEEE
[23] Mesbahi, M.; Egerstedt, M., Graph Theoretic Methods in Multiagent Networks (2010), Princeton University Press · Zbl 1203.93001
[24] Mitra, A.; Sundaram, S., Byzantine-resilient distributed observers for LTI systems, Automatica, 108, 108487 (2019)
[25] Mousavi, S. S.; Haeri, M.; Mesbahi, M., Strong structural controllability of networks under time-invariant and time-varying topological perturbations, IEEE Trans. Autom. Control (2020)
[26] Newsom, J. R.; Mukhopadhyay, V., A multiloop robust controller design study using singular value gradients, J. Guid. Control Dyn., 8, 4, 514-519 (1985) · Zbl 0575.93028
[27] D. Peaucelle, D. Henrion, Y. Labit, K. Taitz, Users guide for sedumi interface 1.04, LAAS-CNRS, Toulouse (2002).
[28] Pirani, M.; Shahrivar, E. M.; Fidan, B.; Sundaram, S., Robustness of leader-follower networked dynamical systems, IEEE Trans. Control Netw. Syst., 5, 4, 1752-1763 (2017) · Zbl 1515.93051
[29] Rezaee, H.; Abdollahi, F., Robust attitude alignment in multispacecraft systems with stochastic links failure, Automatica, 118, 109033 (2020) · Zbl 1447.93074
[30] Senejohnny, D. M.; Sundaram, S.; De Persis, C.; Tesi, P., Resilience against misbehaving nodes in asynchronous networks, Automatica, 104, 26-33 (2019) · Zbl 1415.93029
[31] Shames, I.; Summers, T. H., Rigid network design via submodular set function optimization, IEEE Trans. Netw. Sci. Eng., 2, 3, 84-96 (2015)
[32] Simpson-Porco, J. W.; Dörfler, F.; Bullo, F., Voltage collapse in complex power grids, Nat. Commun., 7, 1, 1-8 (2016)
[33] Summers, T.; Shames, I.; Lygeros, J.; Dörfler, F., Topology design for optimal network coherence, Proceedings of the European Control Conference (ECC), 575-580 (2015), IEEE
[34] Yazıcıoğlu, A. Y.; Egerstedt, M.; Shamma, J. S., Formation of robust multi-agent networks through self-organizing random regular graphs, IEEE Trans. Netw. Sci. Eng., 2, 4, 139-151 (2015)
[35] Young, G. F.; Scardovi, L.; Leonard, N. E., Rearranging trees for robust consensus, Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 1000-1005 (2011), IEEE
[36] Zelazo, D.; Bürger, M., On the robustness of uncertain consensus networks, IEEE Trans. Control Netw. Syst., 4, 2, 170-178 (2015) · Zbl 1370.93038
[37] Zelazo, D.; Mesbahi, M., Graph-theoretic analysis and synthesis of relative sensing networks, IEEE Trans. Autom. Control, 56, 5, 971-982 (2011) · Zbl 1368.93163
[38] Zelazo, D.; Schuler, S.; Allgöwer, F., Performance and design of cycles in consensus networks, Syst. Control Lett., 62, 1, 85-96 (2013) · Zbl 1257.93010
[39] Zhang, Y.; Yağan, O., Robustness of interdependent cyber-physical systems against cascading failures, IEEE Trans. Autom. Control (2019) · Zbl 07256195
[40] Zhang, Y.; Zhou, T., On the edge insertion/deletion and controllability distance of linear structural systems, Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC), 2300-2305 (2017), IEEE
[41] Zheng, Y.; Li, S. E.; Li, K.; Wang, L.-Y., Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control, IEEE Trans. Control Syst. Technol., 24, 4, 1253-1265 (2015)
[42] Zhou, K.; Doyle, J. C., Essentials of Robust Control (1998), Prentice Hall
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.