×

Geophysics-based fluid-facies predictions using ensemble updating of binary state vectors. (English) Zbl 1465.86006

Summary: Fluid flow simulations are commonly used to predict the fluid displacement in subsurface reservoirs; however, model validation is challenging due to the lack of direct measurements. Geophysical data can be used to monitor the displacement of the fluid front. The updating of the fluid front location in two-phase flow problems based on time-lapse geophysical data can be formulated as an inverse problem, specifically a data assimilation problem, where the state is a vector of binary variables representing the fluid-facies and the observations are measurements of continuous geophysical properties, such as electrical or elastic properties. In geosciences, many data assimilation problems are solved using ensemble-based methods relying on the Kalman filter approach. However, for discrete variables, such approaches cannot be applied due to the Gaussian-linear assumption. An innovative approach for mixed discrete-continuous problems based on ensemble updating of binary state vectors is presented for fluid-facies prediction problems with time-lapse geophysical properties. The proposed inversion method is demonstrated in a synthetic two-dimensional simulation example where water is injected into a reservoir and hydrocarbon is produced. Resistivity values obtained from controlled-source electromagnetic data are assumed to be available at different times. According to the results, the proposed inversion method is to a large extent able to reproduce the true underlying binary field of fluid-facies.

MSC:

86A22 Inverse problems in geophysics
86A32 Geostatistics
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
76S05 Flows in porous media; filtration; seepage

Software:

ElemStatLearn; EnKF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aki, K.; Richards, PG, Quantitative seismology: theory and methods (1980), New York: W.H. Freeman and Co, New York
[2] Aziz, K., Petroleum reservoir simulation (1979), London: Applied Science Publishers, London
[3] Bear, J., Dynamics of fluids in porous media (2013), Chelmsford: Courier Corporation, Chelmsford
[4] Bergmann, P.; Schmidt-Hattenberger, C.; Labitzke, T.; Wagner, FM; Just, A.; Flechsig, C.; Rippe, D., Fluid injection monitoring using electrical resistivity tomography—five years of CO2 injection at Ketzin, Germany, Geophys Prospect, 65, 3, 859-875 (2017) · doi:10.1111/1365-2478.12426
[5] Berre, I.; Lien, M.; Mannseth, T., Identification of three-dimensional electric conductivity changes from time-lapse electromagnetic observations, J Comput Phys, 230, 10, 3915-3928 (2011) · Zbl 1219.78037 · doi:10.1016/j.jcp.2011.02.015
[6] Bhuyian, AH; Landrø, M.; Johansen, SE, 3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage, Geophysics, 77, 5, E343-E355 (2012) · doi:10.1190/geo2011-0452.1
[7] Buland, A.; Kolbjørnsen, O., Bayesian inversion of CSEM and magnetotelluric data, Geophysics, 77, 1, E33-E42 (2012) · doi:10.1190/geo2010-0298.1
[8] Claes, N.; Paige, GB; Grana, D.; Parsekian, AD, Parameterization of a hydrologic model with geophysical data to simulate observed subsurface return flow paths, Vadose Zone J, 19, 1, e20024 (2020) · doi:10.1002/vzj2.20024
[9] Commer, M.; Doetsch, J.; Dafflon, B.; Wu, Y.; Daley, TM; Hubbard, SS, Time-lapse 3-D electrical resistance tomography inversion for crosswell monitoring of dissolved and supercritical CO2 flow at two field sites: Escatawpa and Cranfield, Mississippi, USA, Int J Greenhouse Gas Control, 49, 297-311 (2016) · doi:10.1016/j.ijggc.2016.03.020
[10] Constable, S., Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75, 5, 75A67-75A81 (2010) · doi:10.1190/1.3483451
[11] Doucet, A.; de Freitas, N.; Gordon, N., Sequential Monte Carlo methods in practice (2001), New York: Springer, New York · Zbl 0967.00022 · doi:10.1007/978-1-4757-3437-9
[12] Doyen, P., Seismic reservoir characterization: an earth modelling perspective (2007), Houten: EAGE Publications, Houten
[13] Doyen P, Psaila D, Astratti D, Kvamme L, Al Najjar N (2000) Saturation mapping from 4-D seismic data in the Statfjord field. Paper OTC 12100 presented at the Offshore Technology Conference, Houston, Texas, USA, 1-4 May
[14] Evensen, G., Data assimilation: the ensemble Kalman filter (2009), Berlin: Springer, Berlin · Zbl 1395.93534 · doi:10.1007/978-3-642-03711-5
[15] Flinchum, BA; Holbrook, WS; Grana, D.; Parsekian, AD; Carr, BJ; Hayes, JL; Jiao, J., Estimating the water holding capacity of the critical zone using near-surface geophysics, Hydrol Process, 32, 22, 3308-3326 (2018) · doi:10.1002/hyp.13260
[16] Gasperikova, E.; Hoversten, GM, A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration, Lead Edge, 25, 10, 1282-1288 (2006) · doi:10.1190/1.2360621
[17] Hastie, T.; Tibshirani, R.; Friedman, J., The elements of statistical learning: data mining, inference, and prediction (2009), Berlin: Springer, Berlin · Zbl 1273.62005 · doi:10.1007/978-0-387-84858-7
[18] Kotikian, M.; Parsekian, AD; Paige, G.; Carey, A., Observing heterogeneous unsaturated flow at the hillslope scale using time-lapse electrical resistivity tomography, Vadose Zone J, 18, 1, 1-16 (2019) · doi:10.2136/vzj2018.07.0138
[19] Leeuwenburgh, O.; Arts, R., Distance parameterization for efficient seismic history matching with the ensemble Kalman filter, Comput Geosci, 18, 3-4, 535-548 (2014) · doi:10.1007/s10596-014-9434-y
[20] Lie, KA, An introduction to reservoir simulation using MATLAB/GNU Octave (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1425.76001 · doi:10.1017/9781108591416
[21] Lien, M.; Mannseth, T., Sensitivity study of marine CSEM data for reservoir production monitoring, Geophysics, 73, 4, F151-F163 (2008) · doi:10.1190/1.2938512
[22] Lien M, Mannseth T, Agersborg R (2014) Assimilation of time-lapse CSEM data for fluid flow monitoring. In: 76th EAGE conference and exhibition-workshops, 1, European Association of Geoscientists & Engineers, pp 1-3
[23] Loe MK, Tjelmeland H (2020) Ensemble updating of binary state vectors by maximising the expected number of unchanged components. Scand J Stat. doi:10.1111/sjos.12483
[24] MacGregor, L., Integrating seismic, CSEM and well log data for reservoir characterization, Lead Edge, 31, 3, 258-265 (2012)
[25] Martinez, WL; Martinez, AR, Computational statistics handbook with MATLAB (2015), Cambridge: Chapman and Hall/CRC, Cambridge · Zbl 1343.62001 · doi:10.1201/b19035
[26] Mavko, G.; Mukerji, T.; Dvorkin, J., The rock physics handbook (2009), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511626753
[27] Oliver, DS; Reynolds, AC; Liu, N., Inverse theory for petroleum reservoir characterization and history matching (2008), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511535642
[28] Orange, A.; Key, K.; Constable, S., The feasibility of reservoir monitoring using time-lapse marine CSEM, Geophysics, 74, 2, F21-F29 (2009) · doi:10.1190/1.3059600
[29] Shahin, A.; Key, K.; Stoffa, P.; Tatham, R., Petro-electric modeling for CSEM reservoir characterization and monitoring, Geophysics, 77, 1, E9-E20 (2012) · doi:10.1190/geo2010-0329.1
[30] Trani, M.; Arts, R.; Leeuwenburgh, O., Seismic history matching of fluid fronts using the ensemble Kalman filter, SPE J, 18, 1, 159-171 (2012) · doi:10.2118/163043-PA
[31] Tveit, S.; Bakr, SA; Lien, M.; Mannseth, T., Ensemble-based Bayesian inversion of CSEM data for subsurface structure identification, Geophys J Int, 201, 3, 1849-1867 (2015) · doi:10.1093/gji/ggv114
[32] Tveit, S.; Mannseth, T.; Park, J.; Sauvin, G.; Agersborg, R., Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection, Comput Geosci, 24, 1201-1220 (2020) · Zbl 1439.86026 · doi:10.1007/s10596-020-09934-9
[33] Viterbi, A., Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans Inf Theory, 13, 2, 260-269 (1967) · Zbl 0148.40501 · doi:10.1109/TIT.1967.1054010
[34] Weitemeyer, K.; Constable, S.; Key, K.; Behrens, J., First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon, Geophys Res Lett, 33, 3, L03304 (2006) · doi:10.1029/2005GL024896
[35] Zhang, Y.; Leeuwenburgh, O., Image-oriented distance parameterization for ensemble-based seismic history matching, Comput Geosci, 21, 4, 713-731 (2017) · doi:10.1007/s10596-017-9652-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.