×

Patient-specific parameter estimation: coupling a heart model and experimental data. (English) Zbl 1467.92071

Summary: This study develops a hemodynamic model involving the atrium, ventricle, veins, and arteries that can be calibrated to experimental results. It is a Windkessel model that incorporates an unsteady Bernoulli effect in the blood flow to the atrium. The model is represented by ordinary differential equations in terms of blood volumes in the compartments as state variables and it demonstrates the use of conductance instead of resistance to capture the effect of a non-leaking heart valve. The experimental results are blood volume data from 20 young (half of which are women) and 20 elderly (half of which are women) subjects during rest, inotropic stress (dobutamine), and chronotropic stress (glycopyrrolate). The model is calibrated to conform with data and physiological findings in 4 different levels. First, an optimization routine is devised to find model parameter values that give good fit between the model volume curves and blood volume data in the atrium and ventricle. Patient-specific information are used to get initial parameter values as a starting point of the optimization. Also, model pressure curves must show realistic behavior. Second, parametric bootstrapping is performed to establish the reliability of the optimal parameters. Third, statistical tests comparing mean optimal parameter values from young vs elderly subjects and women vs men are examined to support and present age and sex related differences in heart functions. Lastly, statistical tests comparing mean optimal parameter values from resting condition vs pharmacological stress are studied to verify and quantify the effects of dobutamine and glycopyrrolate to the cardiovascular system.

MSC:

92C35 Physiological flow
76Z05 Physiological flows

Software:

SPSS; KELLEY
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aboelkassem, Y.; Savic, D.; Campbell, S., Mathematical modeling of aortic valvce dynamics during systole, J. Theor. Biol., 365, 280-288 (2015) · Zbl 1314.92046
[2] Ahtarovski, K.; Iversen, K.; Lønborg, J.; Madsen, P.; Engstrøm, T.; Vejlstrup, N., Left atrial and ventricular function during dobutamine and glycopyrrolate stress in healthy young and elderly as evaluated by cardiac magnetic resonance, Am. J. Physiol., 303, H1469-H1473 (2012)
[3] Arbab-Zadeh, A.; Dijk, E.; Prasad, A.; Fu, Q.; Torres, P.; Zhang, R.; Thomas, J.; Palmer, D.; Levine, B., Effect of aging and physical activity on left ventricular compliance, Circulation, 110, 1805-1811 (2004)
[4] Aurigemma, G.; Gottdiener, J.; Arnold, A.; Chinali, M.; Hill, J.; Kitzman, D., Left atrial volume and geometry in healthy aging: The cardiovascular health study, Circulation Cardiovascular Imaging, 2, 4, 282-289 (2009)
[5] Blume, G.; Mcleod, C.; Barnes, M.; Sewar, J.; Pellikka, P.; Bastiansen, P.; Tsang, T., Left atrial function: Physiology, assessment, and clinical implications, Eur. J. Echocardiography, 12, 6, 421-430 (2011)
[6] Boyd, E., The Growth of the Surface Area of the Human Body (1935), Oxford University Press
[7] Calderon, P., Habib, M., Kappel, F., de los Reyes V, A., 2017. Control aspects of the human cardiovascular-respiratory system under a nonconstant workload. Mathematical Biosciences 289, 142-152. · Zbl 1378.92013
[8] Chowell, G., Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infectious Disease Modelling, 2, 379-398 (2017)
[9] Danielsen, M., 1998. Modeling of feedback mechanisms which control the heart function in a view to an implementation in cardiovascular models. IMFUFA tekst nr.
[10] Danielsen, M., Ottesen, J., 1997. A dynamical approach to the baroreceptor regulation of the cardiovascular system. Proceedings to the 5th International Symposium, Symbiosis ’97, 25-29.
[11] de los Reyes, A., Jung, E., Kappel, F., 2014. Stabilizing control for a pulsatile cardiovascular mathematical model. Bulletin of Mathematical Biology 76 (6), 1306-1332. · Zbl 1298.92032
[12] Douglas, P., The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk, J. Am. Coll. Cardiol., 42, 1206-1207 (2003)
[13] Electronic Medicines Compendium, 2020. URL:https://www.medicines.org.uk/emc/product/6270
[14] Ellwein, L., Pope, S.R., Xie, A., Batzel, J., Kelley, C., Olufsen, M., 2009. Modeling cardiovascular and respiratory dynamics in congestive heart failure. Preprint. · Zbl 1309.92032
[15] Fan, H.-H., Khoo, M., 2002. Pneuma a comprehensive cardiorespiratory model. Proceedings 2nd Joint EMBS/BMES Conference, 1533-34.
[16] Field, A., Discovering Statistics with IBM SPSS (2013), Sage: Sage Newbury Park, CA
[17] Fujimoto, N.; Hastings, J.; Bhella, P.; Shibata, S.; Gandhi, N.; Carrick-Ranson, G.; Palmer, D.; Levine, B., Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans, J. Physiol., 590, 8, 1871-1880 (2012)
[18] Grimes, R.; Levine, R.; Walker, P.; Yoganathan, A., Dynamics of systolic pulmonary venous flow in mitral regurgitation: Mathematical modeling of the pulmonary venous system and atrium, J. Am. Soc. Echocardiogr., 8, 631-642 (1995)
[19] Guyton, A.; Hall, J., Textbook of medical physiology (2006), Elsevier Inc.
[20] Guyton, A.; Hall, J., Textbook of medical physiology (2016), Elsevier Inc.
[21] Hayward, C.; Kalnins, W.; Kelly, R., Gender-related differences in left ventricular chamber function, Cardiovasc. Res., 49, 2, 340-350 (2001)
[22] Hoppensteadt, F.; Peskin, C., Modeling and Simulation in Medicine and the Life Sciences (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1013.92001
[23] Howell, D., Statistical Methods for Psychology (2002), Duxbury: Duxbury Pacific Grove CA
[24] Kelley, C., Iterative Methods for Optimization (1999), SIAM: SIAM Philadelphia, PA · Zbl 0934.90082
[25] Lane, A.; Ranadive, S.; Yan, H.; Kappus, R.; Cook, M.; Sun, P.; Woods, J.; Wilund, K.; Fernhall, B., Effect of sex on wasted left ventricular effort following maximal exercise, Int. J. Sports Med., 34, 770-776 (2013)
[26] Lim, E.; Chan, G.; Dokos, S.; Ng, S.; Latif, L., A cardiovascular mathematical model of graded head-up tilt, PLoS ONE, 8, 10, Article e77357 pp. (2013)
[27] Lu, K.; Clark, J.; Ghorbel, F.; Ware, D.; Bidani, A., A human cardiopulmonary system model applied to the analysis of the valsalva maneuver, Am. J. Physiol., 281, H2661-H2679 (2001)
[28] Marquis, A.; Arnold, A.; Dean-Bernhoft, C.; Carlson, B.; Olufsen, M., Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model, Math. Biosci., 304, 9-24 (2018) · Zbl 1409.92072
[29] Marwick, T., Stress echocardiography, Heart, 89, 113-118 (2003)
[30] Mcqueen, M.; Peskin, C., A three-dimensional computational method for blood flow in the heart. ii. contractile fibers, J. Comput. Phys., 82, 289-297 (1989) · Zbl 0701.76130
[31] Najjar, S.; Schulman, S.; Gerstenblith, G.; Fleg, J.; Kass, D.; O’Connor, F.; Becker, L.; Lakatta, E., Age and gender affect ventricular-vascular coupling during aerobic exercise, J. Am. Coll. Cardiol., 44, 3, 611-617 (2004)
[32] Olufsen, M.; Ottesen, J., A practical approach to parameter estimation applied to model predicting heart rate regulation, J. Math. Biol., 67, 1, 39-68 (2013) · Zbl 1267.90148
[33] Olufsen, M.; Ottesen, J.; Tran, H.; Ellwein, L.; Lipsitz, L.; Novak, V., Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiol., 99, 1523-1537 (2005)
[34] Ottesen, J., Modelling of the baroreflex-feedback mechanism with time-delay, J. Math. Biol., 36, 41-63 (1997) · Zbl 0887.92015
[35] Ottesen, J., 2011. The mathematical microscope - making the inaccessible accessible. in Betasys, Systems Biology of Regulated Exocytosis in Pancreatic B-cells (eds. B. Boob-Bavnbek et al.), Springer Science+Business Media LLC.
[36] Ottesen, J., Patient specific modeling of the heart as a tool for early diagnoses and treatment planning. ECMTB (2011)
[37] Ottesen, J.; Danielsen, M., Modeling ventricular contraction with heart rate changes, J. Theor. Biol., 222, 337-346 (2003) · Zbl 1464.92078
[38] Ottesen, J.; Olufsen, M., Functionality of the baroreceptor nerves in heart rate regulation, Comput. Methods Programs Biomed., 101, 2, 208-219 (2011)
[39] Peskin, C.; Mcqueen, M., A three-dimensional computational method for blood flow in the heart i. immersed elastic fibers in viscous incompressible fluid, J. Comput. Phys., 81, 372-405 (1989) · Zbl 0668.76159
[40] Pope, S.; Ellwein, L.; Zapata, C.; Novak, V.; Kelley, C.; Olufsen, M., Estimation and identification of parameters in a lumped cerebrovascular model, Math. Biosci. Eng., 6, 1, 93-115 (2011) · Zbl 1159.92025
[41] Redfield, M.; Jacobsen, S.; Borlaug, B.; Rodeheffer, R.; Kass, D., Age- and gender-related ventricular-vascular stiffening: a community-based study, Circulation, 112, 15, 2254-2262 (2005)
[42] Rostagno, C., Heart valve disease in elderly, World J. Cardiol., 11, 2, 71-83 (2019)
[43] Shoemaker, W., 1989. Fluids and electrolytes in the acutely ill adult. in Textbook of Critical Care (eds. W. Shoemaker S. Ayres, A Grenvik, P. Holbrook and W. Leigh Thompson), W.B. Saunders, Philadelphia.
[44] Suga, H.; Sagawa, H.; Shoukas, A., Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio, Circ. Res., 32, 314-322 (1973)
[45] The Mathworks Inc, 2020. URL:https://www.mathworks.com/help/index.html.
[46] Travin, M.; Wexler, J., Pharmacological stress testing, Semin. Nucl. Med., 29, 4, 298-318 (1999)
[47] Ursino, M., Interaction between carotid baroregulation and the pulsating heart: a mathematical model, Am. J. Physiol., 275, 5, H1733-H1747 (1998)
[48] Vieira, M.; Teixeira, R.; Gonçalves, L.; Gersh, B., Left atrial mechanics: echocardiographic assessment and clinical implications, J. Am. Soc. Echocardiogr., 27, 463-478 (2014)
[49] Vingaard, P.; Ottesen, J., Patientspecifik modellering af hjertet med henblik på diagnosticering af hjertesvigt (available upon request to the authors) (2017), Roskilde Universitet, Master’s thesis
[50] Williams, N.; Brady, R.; Gilmore, S.; Gremaud, P.; Tran, H.; Ottesen, J.; Mehlsen, J.; Olufsen, M., Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models, J. Math. Biol., 79, 987-1014 (2019) · Zbl 1419.92006
[51] World Health Organization, 2020. URL:https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.