×

A new family of copula-based concordance orderings of random pairs: properties and nonparametric tests. (English) Zbl 1470.60071

Summary: The formal assessment of the stochastic dominance of a random pair with respect to another one is a question of interest in the economic analysis of populations. For example, a manager may wonder if the components of a portfolio are more associated than that of another competing portfolio, in which case the former is generally considered more at risk. In this paper, a new family of copula-based concordance orderings in the spirit of increasing convex and concave orderings of random pairs is introduced as a natural extension of the well-known concordance ordering. In addition, a complete statistical methodology to test the stochastic dominance of a random pair with respect to another one according to the new concordance orderings is developed. The proposed tests are nonparametric, consistent against all alternatives, and valid under serially dependent data satisfying the \(\alpha\)-mixing assumption. The sampling properties of the tests are investigated with the help of Monte-Carlo simulations and their usefulness is illustrated on real multivariate data.

MSC:

60E15 Inequalities; stochastic orderings
62G10 Nonparametric hypothesis testing
62H05 Characterization and structure theory for multivariate probability distributions; copulas

Software:

TwoCop
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, G. (1996). Nonparametric tests of stochastic dominance in income distributions. Econometrica: Journal of the Econometric Society 1183-1193. · Zbl 0856.90024
[2] Bahraoui, T. and Quessy, J.-F. (2017). Tests of radial symmetry for multivariate copulas based on the copula characteristic function. Electron. J. Stat. 11 2066-2096. · Zbl 1395.62129 · doi:10.1214/17-EJS1280
[3] Barrett, G. F. and Donald, S. G. (2003). Consistent tests for stochastic dominance. Econometrica 71 71-104. · Zbl 1137.62332 · doi:10.1111/1468-0262.00390
[4] Bradley, R. C. (2005). Basic properties of strong mixing conditions. a survey and some open questions. Probab. Surv. 2 107-144. Update of, and a supplement to, the 1986 original. · Zbl 1189.60077
[5] Bücher, A. and Ruppert, M. (2013). Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique. J. Multivariate Anal. 116 208-229. · Zbl 1277.62207
[6] Bücher, A. and Volgushev, S. (2013). Empirical and sequential empirical copula processes under serial dependence. J. Multivariate Anal. 119 61-70. · Zbl 1277.62223 · doi:10.1016/j.jmva.2013.04.003
[7] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 17-39. · Zbl 1181.62125
[8] Cebriàn, A. C., Denuit, M. and Scaillet, O. (2004). Testing for concordance ordering. Astin Bull. 34 151-173. · Zbl 1058.62047
[9] Cook, R. D. and Johnson, M. E. (1981). A family of distributions for modelling nonelliptically symmetric multivariate data. J. Roy. Statist. Soc. Ser. B 43 210-218. · Zbl 0471.62046
[10] Cook, R. D. and Johnson, M. E. (1986). Generalized Burr-Pareto-logistic distributions with applications to a uranium exploration data set. Technometrics 28 123-131.
[11] Davidson, R. and Duclos, J. Y. (2000). Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68 1435-1464. · Zbl 1055.91543
[12] Denuit, M., Lefevre, C. and Shaked, M. (1998). The \(s\)-convex orders among real random variables, with applications. Math. Inequal. Appl. 1 585-613. · Zbl 0916.60011 · doi:10.7153/mia-01-56
[13] Denuit, M., Lefèvre, C. and Mesfioui, M. (1999). A class of bivariate stochastic orderings, with applications in actuarial sciences. Insurance Math. Econom. 24 31-50. 1st IME Conference (Amsterdam, 1997). · Zbl 0966.60007
[14] Denuit, M., Lefèvre, C. and Mesfioui, M. (2003). On spline approximation for bivariate functions of increasing convex type. Rev. Anal. Numér. Théor. Approx. 32 145-159. · Zbl 1084.46503
[15] Denuit, M. M. and Mesfioui, M. (2017). Preserving the Rothschild-Stiglitz type increase in risk with background risk: a characterization. Insurance Math. Econom. 72 1-5. · Zbl 1394.91207 · doi:10.1016/j.insmatheco.2016.10.012
[16] Eubank, R., Schechtman, E. and Yitzhaki, S. (1993). A test for second order stochastic dominance. Comm. Statist. Theory Methods 22 1893-1905. · Zbl 0791.62049 · doi:10.1080/03610929308831123
[17] Fernández-Ponce, J. M. and Rodríguez-Griñolo, M. R. (2017). New properties of the orthant convex-type stochastic orders. TEST 26 618-637. · Zbl 1378.60045 · doi:10.1007/s11749-017-0527-5
[18] Gijbels, I., Omelka, M. and Sznajder, D. (2010). Positive quadrant dependence tests for copulas. Canad. J. Statist. 38 555-581. · Zbl 1349.62152 · doi:10.1002/cjs.10088
[19] Goovaerts, M. J., Kaas, R., van Heerwaarden, A. E. and Bauwelinckx, T. (1990). Effective actuarial methods. Insurance Series 3. North-Holland Publishing Co., Amsterdam.
[20] Guo, X., Li, J., Liu, D. and Wang, J. (2016). Preserving the Rothschild-Stiglitz type of increasing risk with background risk. Insurance Math. Econom. 70 144-149. · Zbl 1373.62225 · doi:10.1016/j.insmatheco.2016.06.008
[21] Hesselager, O. (1996). A unification of some order relations. Insurance Math. Econom. 17 223-224. · Zbl 0853.62080
[22] Joe, H. (2015). Dependence modeling with copulas. Monographs on Statistics and Applied Probability 134. CRC Press, Boca Raton, FL.
[23] Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. Springer, New York. · Zbl 1180.62137
[24] Lehmann, E. L. (1986). Testing statistical hypotheses, second ed. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York. · Zbl 0608.62020
[25] Linton, O., Maasoumi, E. and Whang, Y.-J. (2005). Consistent testing for stochastic dominance under general sampling schemes. Rev. Econom. Stud. 72 735-765. · Zbl 1070.62031 · doi:10.1111/j.1467-937X.2005.00350.x
[26] Linton, O., Song, K. and Whang, Y.-J. (2010). An improved bootstrap test of stochastic dominance. J. Econometrics 154 186-202. · Zbl 1431.62190 · doi:10.1016/j.jeconom.2009.08.002
[27] Marshall, A. W. (1991). Multivariate stochastic orderings and generating cones of functions. In Stochastic orders and decision under risk (Hamburg, 1989). IMS Lecture Notes Monogr. Ser. 19 231-247. Inst. Math. Statist., Hayward, CA. · Zbl 0760.60018 · doi:10.1214/lnms/1215459859
[28] McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica: Journal of the Econometric Society 995-1026. · Zbl 0679.62101
[29] Nelsen, R. B. (2002). Concordance and copulas: a survey. In Distributions with given marginals and statistical modelling 169-177. Kluwer Acad. Publ., Dordrecht. · Zbl 1135.62337
[30] Nelsen, R. B. (2006). An introduction to copulas, second ed. Springer Series in Statistics. Springer, New York. · Zbl 1152.62030
[31] Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques et Applications. Springer. · Zbl 0944.60008
[32] Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. J. Multivariate Anal. 100 377-386. · Zbl 1157.62401
[33] Scaillet, O. (2005). A Kolmogorov-Smirnov type test for positive quadrant dependence. Canad. J. Statist. 33 415-427. · Zbl 1077.62036 · doi:10.1002/cjs.5540330307
[34] Scarsini, M. (1984). On measures of concordance. Stochastica 8 201-218. · Zbl 0582.62047
[35] Schmid, F. and Schmidt, R. (2007). Multivariate extensions of Spearman’s rho and related statistics. Statist. Probab. Lett. 77 407-416. · Zbl 1108.62056 · doi:10.1016/j.spl.2006.08.007
[36] Sklar, A. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. · Zbl 0100.14202
[37] Tchen, A. H. (1980). Inequalities for distributions with given marginals. Ann. Probab. 8 814-827. · Zbl 0459.62010
[38] Whitt, W. (1976). Bivariate distributions with given marginals. Ann. Statist. 4 1280-1289. · Zbl 0367.62022
[39] Yanagimoto, T. and Okamoto, M. (1969). Partial orderings of permutations and monotonicity of a rank correlation statistic. Ann. Inst. Statist. Math. 21 489-506. · Zbl 0208.44704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.