×

Using high-order transport theorems for implicitly defined moving curves to perform quadrature on planar domains. (English) Zbl 1477.65243

Summary: The numerical integration over a planar domain that is cut by an implicitly defined boundary curve is an important problem that arises, for example, in unfitted finite element methods and in isogeometric analysis on trimmed computational domains. In this paper, we introduce a a very general version of the transport theorem for moving domains defined by implicitly defined curves and use it to establish an efficient and accurate quadrature rule for this class of domains. In numerical experiments it is shown that the method achieves high orders of convergence. Our approach is suited for high-order geometrically unfitted finite element methods as well as for high-order trimmed isogeometric analysis.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N85 Fictitious domain methods for boundary value problems involving PDEs
53A04 Curves in Euclidean and related spaces
65D30 Numerical integration
35R37 Moving boundary problems for PDEs

Software:

G+Smo; CutFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Antolin, A. Buffa, and M. Martinelli, Isogeometric analysis on V-reps: First results, Comput. Methods Appl. Mech. Engrg., 355 (2019), pp. 976-1002. · Zbl 1441.65091
[2] S. P. A. Bordas, E. N. Burman, M. G. Larson, and M. A. Olshanskii, eds., Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng. 121, Springer, Cham, 2017. · Zbl 1392.65006
[3] A. Bressan and E. Sande, Approximation in FEM, DG and IGA: A theoretical comparison, Numer. Math., 143 (2019), pp. 923-942. · Zbl 1428.41009
[4] A. Buffa, R. Puppi, and R. Vázquez, A minimal stabilization procedure for isogeometric methods on trimmed geometries, SIAM. J. Numer. Anal., 58 (2020), pp. 2711-2735, https://doi.org/10.1137/19M1244718. · Zbl 1453.65403
[5] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217-1220. · Zbl 1204.65142
[6] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104 (2015), pp. 472-501. · Zbl 1352.65604
[7] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal., 56 (2018), pp. 1525-1546, https://doi.org/10.1137/17M1154266. · Zbl 1448.65201
[8] P. Cermelli, E. Fried, and M. E. Gurtin, Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces, J. Fluid Mech., 544 (2005), pp. 339-351. · Zbl 1083.76061
[9] K. K. Choi and N.-H. Kim, Structural Sensitivity Analysis and Optimization \textup1: Linear Systems, Springer Science & Business Media, 2005.
[10] L. Coradello, P. Antolin, R. Vázquez, and A. Buffa, Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach, Comput. Methods Appl. Mech. Engrg., 364 (2020), 112925. · Zbl 1442.65356
[11] T. Cui, W. Leng, H. Liu, L. Zhang, and W. Zheng, High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface, ACM Trans. Math. Software, 46 (2020), 3. · Zbl 1484.65046
[12] F. de Prenter, C. Verhoosel, and E. van Brummelen, Preconditioning immersed isogeometric finite element methods with application to flow problems, Comput. Methods Appl. Mech. Engrg., 348 (2019), pp. 604-631. · Zbl 1440.65197
[13] F. de Prenter, C. V. Verhoosel, E. van Brummelen, J. Evans, C. Messe, J. Benzaken, and K. Maute, Multigrid solvers for immersed finite element methods and immersed isogeometric analysis, Comput. Mech., 65 (2020), pp. 807-838. · Zbl 1477.74106
[14] K. Deckelnick, C. M. Elliott, and T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal., 52 (2014), pp. 2137-2162, https://doi.org/10.1137/130948641. · Zbl 1307.65164
[15] S. C. Divi, C. V. Verhoosel, F. Auricchio, A. Reali, and E. H. van Brummelen, Error-estimate-based adaptive integration for immersed isogeometric analysis, Comput. Math. Appl., 80 (2020), pp. 2481-2516. · Zbl 1455.74087
[16] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. Hughes, n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1726-1741. · Zbl 1227.65093
[17] C. Giannelli, T. Kanduč, F. Pelosi, and H. Speleers, An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines, J. Comput. Appl. Math., 349 (2019), pp. 410-423. · Zbl 1451.74217
[18] R. Glowinski, T.-W. Pan, and J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (1994), pp. 283-303. · Zbl 0845.73078
[19] R. Goldman, Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Design, 22 (2005), pp. 632-658. · Zbl 1084.53004
[20] J. Hakenberg and U. Reif, On the volume of sets bounded by refinable functions, Appl. Math. Comput., 272 (2016), pp. 2-19. · Zbl 1410.65063
[21] K. Höllig, U. Reif, and J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), pp. 442-462, https://doi.org/10.1137/S0036142900373208. · Zbl 0996.65119
[22] T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4135-4195. · Zbl 1151.74419
[23] C.-K. Im and S.-K. Youn, The generation of 3D trimmed elements for NURBS-based isogeometric analysis, Int. J. Comput. Methods, 15 (2018), 1850065. · Zbl 1404.65268
[24] M. Joulaian, S. Hubrich, and A. Düster, Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57 (2016), pp. 979-999. · Zbl 1382.65066
[25] H.-J. Kim, Y.-D. Seo, and S.-K. Youn, Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 2982-2995. · Zbl 1229.74131
[26] L. Kudela, N. Zander, S. Kollmannsberger, and E. Rank, Smart octrees: Accurately integrating discontinuous functions in \textup3D, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 406-426. · Zbl 1436.65022
[27] L. Leidinger, M. Breitenberger, A. Bauer, S. Hartmann, R. Wüchner, K.-U. Bletzinger, F. Duddeck, and L. Song, Explicit dynamic isogeometric B-rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg., 351 (2019), pp. 891-927. · Zbl 1441.74256
[28] T. Lin, Y. Lin, and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53 (2015), pp. 1121-1144, https://doi.org/10.1137/130912700. · Zbl 1316.65104
[29] T. Ludescher, S. Gross, and A. Reusken, A multigrid method for unfitted finite element discretizations of elliptic interface problems, SIAM J. Sci. Comput., 42 (2020), pp. A318-A342, https://doi.org/10.1137/18M1203353. · Zbl 1447.65156
[30] A. Mantzaflaris, F. Scholz, et al., G+Smo (Geometry + Simulation Modules) v0.8.1, http://gs.jku.at/gismo, 2020.
[31] B. Marussig, R. Hiemstra, and T. Hughes, Improved conditioning of isogeometric analysis matrices for trimmed geometries, Comput. Methods Appl. Mech. Engrg., 334 (2018), pp. 79-110. · Zbl 1440.74426
[32] B. Marussig and T. Hughes, A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 25 (2018), pp. 1059-1127.
[33] F. Massarwi, P. Antolin, and G. Elber, Volumetric untrimming: Precise decomposition of trimmed trivariates into tensor products, Comput. Aided Geom. Design, 71 (2019), pp. 1-15. · Zbl 1505.65081
[34] R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50 (2012), pp. 3134-3162, https://doi.org/10.1137/090763093. · Zbl 1262.65178
[35] S. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47 (2011), pp. 535-554. · Zbl 1221.65078
[36] A. Nagy and D. Benson, On the numerical integration of trimmed isogeometric elements, Comput. Methods Appl. Mech. Engrg., 284 (2015), pp. 165-185. · Zbl 1425.65040
[37] T. S. Newman and H. Yi, A survey of the marching cubes algorithm, Computers & Graphics, 30 (2006), pp. 854-879.
[38] M. A. Olshanskii and D. Safin, Numerical integration over implicitly defined domains for higher order unfitted finite element methods, Lobachevskii J. Math., 37 (2016), pp. 582-596. · Zbl 1354.65252
[39] N. Patrikalakis and T. Maekawa, Shape Interrogation for Computer Aided Design and Manufacturing, Springer, Berlin, Heidelberg, 2002. · Zbl 1035.65016
[40] M. Ruess, D. Schillinger, A. Özcan, and E. Rank, Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269 (2014), pp. 46-71. · Zbl 1296.74013
[41] R. I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput., 37 (2015), pp. A993-A1019, https://doi.org/10.1137/140966290. · Zbl 1328.65070
[42] D. Schillinger and M. Ruess, The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22 (2015), pp. 391-455. · Zbl 1348.65056
[43] F. Scholz and B. Jüttler, Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112577. · Zbl 1442.65025
[44] F. Scholz, A. Mantzaflaris, and B. Jüttler, First order error correction for trimmed quadrature in isogeometric analysis, in Advanced Finite Element Methods with Applications, Lect. Notes Comput. Sci. Eng. 128, Springer, Cham, 2019, pp. 297-321. · Zbl 07159684
[45] Y. Sudhakar and W. A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput. Methods Appl. Mech. Engrg., 258 (2013), pp. 39-54. · Zbl 1286.65037
[46] V. Thiagarajan and V. Shapiro, Adaptively weighted numerical integration over arbitrary domains, Comput. Math. Appl., 67 (2014), pp. 1682-1702. · Zbl 1362.65029
[47] V. Thiagarajan and V. Shapiro, Adaptively weighted numerical integration in the finite cell method, Comput. Methods Appl. Mech. Engrg., 311 (2016), pp. 250-279. · Zbl 1439.65033
[48] C. Wang, X. Zhu, and X. Zhang, Quasi-conforming analysis method for trimmed CAD surfaces, Eur. J. Mech. A Solids, 81 (2020), 103959. · Zbl 1475.74126
[49] T. Yang, A. Qarariyah, H. Kang, and J. Deng, Numerical integration over implicitly defined domains with topological guarantee, Commun. Math. Stat., 7 (2019), pp. 459-474. · Zbl 07143951
[50] L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2051-2067. · Zbl 1067.76576
[51] X. Zhu, Z. Ma, and P. Hu, Nonconforming isogeometric analysis for trimmed CAD geometries using finite-element tearing and interconnecting algorithm, Proc. Inst. Mech. Engrs. Part C: J. Mech. Eng. Sci., 231 (2017), pp. 1371-1389.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.