×

A second order dynamical system and its discretization for strongly pseudo-monotone variational inequalities. (English) Zbl 07389165

Summary: We consider a second order dynamical system for solving variational inequalities in Hilbert spaces. Under standard conditions, we prove the existence and uniqueness of strong global solution of the proposed dynamical system. The exponential convergence of trajectories is established under strong pseudo-monotonicity and Lipschitz continuity assumptions. A discrete version of the proposed dynamical system leads to a relaxed inertial projection algorithm whose linear convergence is proved under suitable conditions on parameters. We discuss the possibility of extension to general monotone inclusion problems. Finally some numerical experiments are reported demonstrating the theoretical results.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J40 Variational inequalities
90C30 Nonlinear programming
90C52 Methods of reduced gradient type

Software:

AIR tools; iPiasco
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), pp. 3-11. · Zbl 0991.65056
[2] A.S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Èkonom. i Mat. Metody, 12 (1976), pp. 1164-1173. · Zbl 0368.90115
[3] A.S. Antipin, Continuous and iterative processes with projection operators and projection type-operators, Voprosy Kibernet. (Moscow), No. 154 (1989), pp. 5-43. · Zbl 0694.65027
[4] A.S. Antipin, Minimization of convex functions on convex sets by means of differential equations, Differ. Uravn., 30 (1994), pp. 1475-1486, 1652 (in Russian); Differ. Equ., 30 (1994), pp. 1365-1375 (in English). · Zbl 0852.49021
[5] H. Attouch and A. Cabot, Convergence of a relaxed inertial proximal algorithm for maximally monotone operators, Math. Program., 184 (2020), pp. 243-287, https://doi.org/10.1007/s10107-019-01412-0. · Zbl 07263694
[6] H. Attouch and A. Cabot, Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions, Appl. Math. Optim., 80 (2019), pp. 547-598. · Zbl 1434.90129
[7] H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: Global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000), pp. 1-34. · Zbl 0983.37016
[8] H. Attouch, J. Peypouquet, and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), pp. 232-256, https://doi.org/10.1137/130910294. · Zbl 1295.90044
[9] M. Avriel, W.E. Diewert, S. Schaible, and I. Zang, Generalized Concavity, Classics Appl. Math. 63, SIAM, 2010, https://doi.org/10.1137/1.9780898719437. · Zbl 1200.90001
[10] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert spaces, CMS Books Math., Springer, 2011. · Zbl 1218.47001
[11] J. Bolte, Continuous gradient projection method in Hilbert spaces, J. Optim. Theory. Appl., 119 (2003), pp. 235-259. · Zbl 1055.90069
[12] R.I. Boţ and E.R. Csetnek, Second order forward-backward dynamical systems for monotone inclusion problems, SIAM J. Control Optim., 54 (2016), pp. 1423-1443, https://doi.org/10.1137/15M1012657. · Zbl 1339.34070
[13] R.I. Bo\ct and E.R. Csetnek, A dynamical system associated with the fixed points set of a nonexpansive operator, J. Dynam. Differential Equations, 29 (2017), pp. 155-168. · Zbl 1387.34091
[14] R.I. Bo\ct, E.R. Csetnek, and P.T. Vuong, The forward-backward-forward method from discrete and continuous perspective for pseudo-monotone variational inequalities in Hilbert spaces, European J. Oper. Res., 287 (2020), pp. 49-60, https://doi.org/10.1016/j.ejor.2020.04.035. · Zbl 1443.90268
[15] R.I. Bo\ct, M. Sedlmayer, and P.T. Vuong, A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs, preprint, https://arxiv.org/abs/2003.07886, 2020.
[16] E. Cavazzuti, P. Pappalardo, and M. Passacantando, Nash equilibria, variational inequalities, and dynamical systems, J. Optim. Theory Appl., 114 (2002), pp. 491-506. · Zbl 1020.49003
[17] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols. I and II, Springer-Verlag, New York, 2003. · Zbl 1062.90002
[18] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984. · Zbl 0537.46001
[19] K. Guo, On the linear convergence rate of a relaxed forward-backward splitting method, Optimization, 70 (2021), pp. 1161-1170, https://doi.org/10.1080/02331934.2020.1783260. · Zbl 1470.90076
[20] N.T.T. Ha, J.J. Strodiot, and P.T. Vuong, On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities, Opt. Lett., 12 (2018), pp. 1625-1638. · Zbl 1403.49007
[21] P.C. Hansen and J.S. Jørgensen, AIR Tools II: Algebraic iterative reconstruction methods, improved implementation, Numer. Algorithms, 79 (2018), pp. 107-137. · Zbl 1397.65007
[22] P.C. Hansen and M. Saxild-Hansen, AIR Tools-A MATLAB package of algebraic iterative reconstruction methods, J. Comput. Appl. Math., 236 (2012), pp. 2167-2178. · Zbl 1241.65042
[23] A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Rech. Math. Appl. 17, Masson, Paris, 1991. · Zbl 0726.58001
[24] X. Hu and J. Wang, Global stability of a recurrent neural network for solving pseudomonotone variational inequalities, in Proc. IEEE Int. Symp. Circuits Syst., Island of Kos, Greece, 2006, pp. 755-758.
[25] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl., 66 (1990), pp. 37-46. · Zbl 0679.90055
[26] P.D. Khanh and P.T. Vuong, Modified projection method for strongly pseudomonotone variational inequalities, J. Global Optim., 58 (2014), pp. 341-350. · Zbl 1454.47095
[27] D.S. Kim, P.T. Vuong, and P.D. Khanh, Qualitative properties of strongly pseudomonotone variational inequalities, Opt. Lett., 10 (2016), pp. 1669-1679. · Zbl 1392.90115
[28] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. · Zbl 0457.35001
[29] D.A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), pp. 311-325. · Zbl 1327.47063
[30] A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Kluwer Academic, 1996. · Zbl 0865.90018
[31] P. Ochs, T. Brox, and T. Pock, iPiasco: Inertial proximal algorithm for strongly convex optimization, J. Math. Imaging Vision, 53 (2015), pp. 171-181. · Zbl 1327.90219
[32] M. Pappalardo and M. Passacantando, Stability for equilibrium problems: From variational inequalities to dynamical systems, J. Optim. Theory Appl., 113 (2002), pp. 567-582. · Zbl 1017.49013
[33] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., 4 (1964), pp. 1-17. · Zbl 0147.35301
[34] M.V. Solodov and B.F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), pp. 765-776, https://doi.org/10.1137/S0363012997317475. · Zbl 0959.49007
[35] N.N. Tam, J.C. Yao, and N.D. Yen, Solution methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 138 (2008), pp. 253-273. · Zbl 1302.49015
[36] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288. · Zbl 0850.62538
[37] P.T. Vuong, The global exponential stability of a dynamical system for solving variational inequalities, Netw. Spat. Econ., (2019), https://doi.org/10.1007/s11067-019-09457-6. · Zbl 1517.93084
[38] P.T. Vuong and J.J. Strodiot, A dynamical system for strongly pseudo-monotone equilibrium problems, J. Optim. Theory Appl., 185 (2020), pp. 767-784. · Zbl 1481.47094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.