×

Model independent study for the anomalous quartic \(WW\gamma\gamma \) couplings at future electron-proton colliders. (English) Zbl 1473.81239

Summary: The Large Hadron Electron Collider and the Future Circular Collider-hadron electron with high center-of-mass energy and luminosity allow to better understand the Standard Model and to examine new physics beyond the Standard Model in the electroweak sector. Multi-boson processes permit for a measurement of the gauge boson self-interactions of the Standard Model that can be used to determine the anomalous gauge boson couplings. For this purpose, we present a study of the process \(ep \to \nu_e \gamma\gamma j\) at the Large Hadron Electron Collider with center-of-mass energies of 1.30, 1.98 TeV and at the Future Circular Collider-hadron electron with center-of-mass energies of 7.07, 10 TeV to interpret the anomalous quartic \(WW \gamma\gamma\) gauge couplings using a model independent way in the framework of effective field theory. We obtain the sensitivity limits at 95% Confidence Level on 13 different anomalous couplings arising from dimension-8 operators. The best limit in \(f_{Mi}/\Lambda^4\) (\(i = 0, 1, 2, 3, 4, 5, 7\)) parameters is obtained for \(f_{M2} /\Lambda^4\) parameter while the best sensitivity derived on \(f_{Ti} / \Lambda^4\) (\(i = 0, 1, 2, 5, 6, 7\)) parameters is obtained for \(f_{T5} /\Lambda^4\). In addition, this study is the first report on the anomalous quartic couplings determined by effective Lagrangians at \(ep\) colliders.

MSC:

81V22 Unified quantum theories
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
81V73 Bosonic systems in quantum theory
81U35 Inelastic and multichannel quantum scattering
81T12 Effective quantum field theories
81T50 Anomalies in quantum field theory

Software:

FeynRules
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Belanger, G.; Boudjema, F., Phys. Lett. B, 288, 201 (1992)
[2] Degrande, C.
[3] Gutierrez-Rodriguez, A.; Honorato, C. G.; Montano, J.; Perez, M. A., Phys. Rev. D, 89, 3, Article 034003 pp. (2014)
[4] Belanger, G.; Boudjema, F.; Kurihara, Y.; Perret-Gallix, D.; Semenov, A., Eur. Phys. J. C, 13, 283-293 (2000)
[5] Stirling, W. J.; Werthenbach, A., Eur. Phys. J. C, 14, 103-110 (2000)
[6] Leil, G. A.; Stirling, W. J., J. Phys. G, 21, 517-524 (1995)
[7] Dervan, P. J.; Signer, A.; Stirling, W. J.; Werthenbach, A., J. Phys. G, 26, 607-615 (2000)
[8] Chong, C., Eur. Phys. J. C, 74, 11, 3166 (2014)
[9] Koksal, M.; Senol, A., Int. J. Mod. Phys. A, 30, 20, Article 1550107 pp. (2015)
[10] Chen, C., Eur. Phys. J. C, 74, 11, 3166 (2014)
[11] Stirling, W. J.; Werthenbach, A., Phys. Lett. B, 466, 369-374 (1999)
[12] Senol, A.; Koksal, M.; Inan, S. C., Adv. High Energy Phys., 2017, Article 6970587 pp. (2017)
[13] Atag, S.; Sahin, I., Phys. Rev. D, 75, Article 073003 pp. (2007)
[14] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Novaes, S. F., Nucl. Phys. B, 411, 381-396 (1994)
[15] Eboli, O. J.P.; Magro, M. B.; Mercadante, P. G.; Novaes, S. F., Phys. Rev. D, 52, 15-21 (1995)
[16] Sahin, I., J. Phys. G, 36, Article 075007 pp. (2009)
[17] Koksal, M.; Ari, V.; Senol, A., Adv. High Energy Phys., 2016, Article 8672391 pp. (2016)
[18] Koksal, M., Mod. Phys. Lett. A, 29, 34, Article 1450184 pp. (2014)
[19] Senol, A.; Koksal, M., J. High Energy Phys., 1503, Article 139 pp. (2015)
[20] Koksal, M., Eur. Phys. J. Plus, 130, 4, 75 (2015)
[21] Yang, D.; Mao, Y.; Li, Q.; Liu, S.; Xu, Z.; Ye, K., J. High Energy Phys., 1304, Article 108 pp. (2013)
[22] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Lietti, S. M.; Novaes, S. F., Phys. Rev. D, 63, Article 075008 pp. (2001)
[23] Bell, P. J., Eur. Phys. J. C, 64, 25-33 (2009)
[24] Ahmadov, A. I.
[25] Schonherr, M., J. High Energy Phys., 1807, Article 076 pp. (2018)
[26] Wen, Y., J. High Energy Phys., 1503, Article 025 pp. (2015)
[27] Ye, K.; Yang, D.; Li, Q., Phys. Rev. D, 88, Article 015023 pp. (2013)
[28] Yang, D., J. High Energy Phys., 1304, Article 108 pp. (2013)
[29] Eboli, O. J.P.; Gonzalez-Garcia, M. C.; Lietti, S. M., Phys. Rev. D, 69, Article 095005 pp. (2004)
[30] Perez, G.; Sekulla, M.; Zeppenfeld, D., Eur. Phys. J. C, 78, 9, 759 (2018)
[31] Sahin, I.; Sahin, B., Phys. Rev. D, 86, Article 115001 pp. (2012)
[32] Senol, A.; Koksal, M., Phys. Lett. B, 742, 143-148 (2015)
[33] Baldenegro, C., J. High Energy Phys., 1706, Article 142 pp. (2017)
[34] Fichet, S., J. High Energy Phys., 1502, Article 165 pp. (2015)
[35] Pierzchala, T.; Piotrzkowski, K., Nucl. Phys. B, Proc. Suppl., 179-180, 257 (2008)
[36] J. High Energy Phys., 08, Article 119 pp. (2016)
[37] J. High Energy Phys., 06, Article 106 pp. (2017)
[38] Baak, M., The Snowmass EW WG report (2013)
[39] Bi, H. Y.; Zhang, R. Y.; Wu, X. G.; Ma, W. G.; Li, X. Z.; Owusu, S., Phys. Rev. D, 95, Article 074020 pp. (2017)
[40] Acar, Y. C., Nucl. Instrum. Methods Phys. Res., Sect. A, 871, 47-53 (2017)
[41] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., J. High Energy Phys., 06, Article 128 pp. (2011) · Zbl 1298.81362
[42] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Comput. Phys. Commun., 185, 2250 (2014)
[43] Pumplin, J.; Stump, D. R.; Huston, J.; Lai, H. L.; Nadolsky, P. M.; Tung, W. K., J. High Energy Phys., 0207, Article 012 pp. (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.