×

Constraints on anomalous quartic gauge couplings by \(\gamma \gamma \rightarrow W^+W^-\) scattering. (English) Zbl 1472.81259

Summary: The vector boson scattering (VBS) processes at the Large Hadron Collider (LHC) are very suitable to probe the anomalous quartic gauge couplings (aQGCs). We study the dimension-8 operators contributing to the anomalous \(\gamma \gamma W W\) coupling via the exclusive \(\gamma \gamma \to W^+ W^-\) scattering. By analysing the kinematical features of the signals, we propose an event selection strategy to highlight the aQGC contributions. The statistical significances of the signals at 13 and 14 TeV LHC with current luminosity are obtained. The \(\gamma \gamma \to W^+ W^-\) scattering is found to be sensitive to \(O_{M_i}\) operators and can contribute to the combined limits.

MSC:

81U35 Inelastic and multichannel quantum scattering
81V25 Other elementary particle theory in quantum theory
81V19 Other fundamental interactions in quantum theory

Software:

FeynRules
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aad, G., Phys. Lett. B, 716, 1 (2012); Chatrchyan, S.; Collaboration, C. M.S., Phys. Lett. B, 716, 30 (2012)
[2] Green, D. R.; Meade, P.; Pleier, M. A., Rev. Mod. Phys., 89, Article 035008 pp. (2017)
[3] Alessandro, B., Rev. Phys., 3, 44 (2018)
[4] Chang, J., Phys. Rev. D, 87, Article 093005 pp. (2013); Zhang, C.; Zhou, S.-Y., J. High Energy Phys., 1906, Article 137 pp. (2019); Zhang, C.; Zhou, S.-Y., Phys. Rev. D, 100, Article 095003 pp. (2019)
[5] Chatrchyan, S.; Collaboration, C. M.S., J. High Energy Phys., 1307, Article 116 pp. (2013); Delgado, R. L.; Dobado, A.; Llanes-Estrada, F. J., Eur. Phys. J. C, 77, 205 (2017); Delgado, R. L.; Dobado, A.; Espada, M., J. High Energy Phys., 1811, Article 010 pp. (2018); Ari, V.; Gurkanli, E.; Billur, A. A.; Koksal, M.; Ari, V.; Gurkanli, E.; Gutiérrez-Rodríguez, A.
[6] Grzadkowski, B., J. High Energy Phys., 10, Article 085 pp. (2010); Willenbrock, S.; Zhang, C., Annu. Rev. Nucl. Part. Sci., 64, 83 (2014); Massó, E., J. High Energy Phys., 1410, Article 128 pp. (2014)
[7] Zhang, C.; Zhou, S.-Y.
[8] Born, M.; Infeld, L., Proc. R. Soc. Lond. Ser. A, 144, 425 (1934); Ellis, J.; Ge, S.-F., Phys. Rev. Lett., 121, Article 041801 pp. (2018)
[9] Henning, B.; Lu, X.; Melia, T., J. High Energy Phys., 08, Article 016 pp. (2017); Ellis, J.; Ge, S.-F.; He, H.-J., Chin. Phys. C, 44, Article 063106 pp. (2020); Ellis, J.; He, H.-J.; Xiao, R.-Q., Sci. China, Phys. Mech. Astron., 64, Article 221062 pp. (2021)
[10] Phys. Rev. Lett., 113, Article 141803 pp. (2014)
[11] Phys. Rev. Lett., 114, Article 051801 pp. (2015); Phys. Rev. Lett., 120, Article 081801 pp. (2018)
[12] Kalinowski, J., Eur. Phys. J. C, 78, 403 (2018)
[13] J. High Energy Phys., 1706, Article 106 pp. (2017)
[14] Phys. Lett. B, 774, 682 (2017)
[15] Phys. Lett. B, 795, 281 (2019), CMS-PAS-SMP-18-001; Phys. Lett. B, 793, 469 (2019)
[16] J. High Energy Phys., 1608, Article 119 pp. (2016)
[17] Éboli, O. J.P.; Gonzalez-Garcia, M. C., Phys. Rev. D, 93, Article 093013 pp. (2016)
[18] Éboli, O. J.P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K., Phys. Rev. D, 74, Article 073005 pp. (2006)
[19] J. High Energy Phys., 09, Article 051 pp. (2017)
[20] Eur. Phys. J. C, 79, 970 (2019)
[21] Alwall, J., J. High Energy Phys., 1407, Article 079 pp. (2014)
[22] Christensen, N. D.; Duhr, C., Comput. Phys. Commun., 180, 1614 (2009)
[23] Sjöstrand, T., Comput. Phys. Commun., 191, 159 (2015) · Zbl 1344.81029
[24] de Favereau, J., J. High Energy Phys., 1302, Article 057 pp. (2013)
[25] Rauch, M., KA-TP-35-2016
[26] CMS-EXO-19-002
[27] PoS, LHCP2019, 242 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.