×

Lattice determinations of the strong coupling. (English) Zbl 1508.81960

Summary: Lattice QCD has reached a mature status. State of the art lattice computations include \(u\), \(d\), \(s\) (and even the \(c)\) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory.
One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error.
The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T25 Quantum field theory on lattices
81T17 Renormalization group methods applied to problems in quantum field theory
81R40 Symmetry breaking in quantum theory
81V35 Nuclear physics
81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory

Software:

RunDec
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aoki, S., FLAG review (2019), arXiv:1902.08191 [hep-lat]
[2] Parker, R. H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H., Measurement of the fine-structure constant as a test of the Standard Model, Science, 360, 191 (2018), arXiv:1812.04130 [physics.atom-ph] · Zbl 1416.81019
[3] Hanneke, D.; Fogwell, S.; Gabrielse, G., New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., 100, Article 120801 pp. (2008), arXiv:0801.1134 [physics.atom-ph]
[4] Politzer, H. D., Reliable perturbative results for strong interactions?, Phys. Rev. Lett., 30, 1346-1349 (1973), [, 274(1973)]
[5] Gross, D. J.; Wilczek, F., Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett., 30, 1343-1346 (1973), [, 271(1973)]
[6] Callan, J.; Curtis, G., Broken scale invariance in scalar field theory, Phys. Rev. D, 2, 1541-1547 (1970)
[7] Symanzik, K., Small distance behavior in field theory and power counting, Comm. Math. Phys., 18, 227-246 (1970) · Zbl 0195.55902
[8] Bardeen, W. A.; Buras, A. J.; Duke, D. W.; Muta, T., Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D, 18, 3998 (1978)
[9] Boyle, P.; Del Debbio, L.; Khamseh, A., Massive momentum-subtraction scheme, Phys. Rev. D, 95, 5, Article 054505 pp. (2017), arXiv:1611.06908 [hep-lat]
[10] Fritzsch, P.; Sommer, R.; Stollenwerk, F.; Wolff, U., Symanzik improvement with dynamical charm: A 3+1 scheme for wilson quarks, J. High Energy Phys., 06, 025 (2018), arXiv:1805.01661 [hep-lat] · Zbl 1395.81176
[11] van Ritbergen, T.; Vermaseren, J. A.M.; Larin, S. A., The four loop beta function in quantum chromodynamics, Phys. Lett. B, 400, 379-384 (1997), arXiv:hep-ph/9701390 [hep-ph]
[12] Czakon, M., The four-loop QCD beta-function and anomalous dimensions, Nuclear Phys. B, 710, 485-498 (2005), arXiv:hep-ph/0411261 [hep-ph] · Zbl 1115.81400
[13] Baikov, P. A.; Chetyrkin, K. G.; Kḧn, J. H., Five-loop running of the QCD coupling constant, Phys. Rev. Lett., 118, 8, Article 082002 pp. (2017), arXiv:1606.08659 [hep-ph]
[14] Luthe, T.; Maier, A.; Marquard, P.; Schröder, Y., Towards the five-loop Beta function for a general gauge group, J. High Energy Phys., 07, 127 (2016), arXiv:1606.08662 [hep-ph] · Zbl 1390.81644
[15] Herzog, F.; Ruijl, B.; Ueda, T.; Vermaseren, J. A.M.; Vogt, A., The five-loop beta function of yang-mills theory with fermions, J. High Energy Phys., 02, 090 (2017), arXiv:1701.01404 [hep-ph] · Zbl 1377.81103
[16] Luthe, Thomas; Maier, Andreas; Marquard, Peter; Schroder, York, The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge, J. High Energ. Phys., 10, 166 (2017), arXiv:1709.07718 · Zbl 1383.81343
[17] Chetyrkin, K. G.; Falcioni, G.; Herzog, F.; Vermaseren, J. A.M., Five-loop renormalisation of QCD in covariant gauges, J. High Energ. Phys., 10, 179 (2017), arXiv:1709.08541 · Zbl 1383.81336
[18] Hasenfratz, A.; Hasenfratz, P., The connection between the lambda parameters of lattice and continuum QCD, Phys. Lett. B, 93, 165 (1980), [, 241(1980)]
[19] Chetyrkin, K. G.; Kuhn, J. H.; Sturm, C., QCD decoupling at four loops, Nuclear Phys. B, 744, 121-135 (2006), arXiv:hep-ph/0512060 [hep-ph]
[20] Weinberg, S., Effective gauge theories, Phys. Lett. B, 91, 51-55 (1980)
[21] Bernreuther, W.; Wetzel, W., Decoupling of heavy quarks in the minimal subtraction scheme, Nuclear Phys. B. Nuclear Phys. B, Nuclear Phys. B, 513, 758-236 (1998), (erratum)
[22] Grozin, A. G.; Hoeschele, M.; Hoff, J.; Steinhauser, M.; Hoschele, M.; Hoff, J.; Steinhauser, M., Simultaneous decoupling of bottom and charm quarks, J. High Energy Phys., 09, 066 (2011), arXiv:1107.5970 [hep-ph] · Zbl 1301.81299
[23] Schroder, Y.; Steinhauser, M., Four-loop decoupling relations for the strong coupling, J. High Energy Phys., 01, 051 (2006), arXiv:hep-ph/0512058 [hep-ph]
[24] Kniehl, B. A.; Kotikov, A. V.; Onishchenko, A. I.; Veretin, O. L., Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme, Phys. Rev. Lett., 97, 042001 (2006), arXiv:hep-ph/0607202
[25] A. Athenodorou, J. Finkenrath, F. Knechtli, T. Korzec, B. Leder, M.K. Marinkovic, R. Sommer, How perturbative are heavy sea quarks? arXiv:1809.03383 [hep-lat]. · Zbl 1415.81109
[26] Korzec, T.; Knechtli, F.; Cali, S.; Leder, B.; Moir, G., Impact of dynamical charm quarks, PoS, LATTICE2016, 126 (2017), arXiv:1612.07634 [hep-lat]
[27] Zyla, P. A., Review of particle physics, Prog. Theor. Exp. Phys., 2020, 8, 083C01 (2020)
[28] Pich, A., Precision tau physics, Prog. Part. Nucl. Phys., 75, 41-85 (2014), arXiv:1310.7922 [hep-ph]
[29] Baikov, P. A.; Chetyrkin, K. G.; Kuhn, J. H., Order alpha**4(s) QCD corrections to Z and tau decays, Phys. Rev. Lett., 101, Article 012002 pp. (2008), arXiv:0801.1821 [hep-ph]
[30] Baikov, P. A.; Chetyrkin, K. G.; Kuhn, J. H.; Rittinger, J., Complete \(\mathcal{O} ( \alpha_s^4 )\) QCD corrections to hadronic \(Z\)-decays, Phys. Rev. Lett., 108, Article 222003 pp. (2012), arXiv:1201.5804 [hep-ph]
[31] Baikov, P. A.; Chetyrkin, K. G.; Kuhn, J. H.; Rittinger, J., Adler function, sum rules and crewther relation of order \(O( \alpha_s^4)\): the singlet case, Phys. Lett. B, 714, 62-65 (2012), arXiv:1206.1288 [hep-ph]
[32] Ball, R. D.; Bertone, V.; Del Debbio, L.; Forte, S.; Guffanti, A.; Latorre, J. I.; Lionetti, S.; Rojo, J.; Ubiali, M., Precision NNLO determination of \(\alpha_s ( M_Z )\) using an unbiased global parton set, Phys. Lett. B, 707, 66-71 (2012), arXiv:1110.2483 [hep-ph]
[33] Ball, R. D.; Carrazza, S.; Del Debbio, L.; Forte, S.; Kassabov, Z.; Rojo, J.; Slade, E.; Ubiali, M., Precision determination of the strong coupling constant within a global PDF analysis, Eur. Phys. J. C, 78, 5, 408 (2018), arXiv:1802.03398 [hep-ph]
[34] Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S., Uncertainties on \(\alpha_S\) in the MMHT2014 global PDF analysis and implications for SM predictions, Eur. Phys. J. C, 75, 9, 435 (2015), arXiv:1506.05682 [hep-ph]
[35] Salam, G. P., The strong coupling: a theoretical perspective, (Levy, A.; Forte, S.; Ridolfi, G., From My Vast Repertoire.: Guido Altarelli’s Legacy (2019)), 101-121, arXiv:1712.05165 [hep-ph]
[36] S. Forte, Z. Kassabov, Why \(\alpha_s\) cannot be determined from hadronic processes without simultaneously determining the parton distributions, arXiv:2001.04986 [hep-ph].
[37] Dalla Brida, M.; Fritzsch, P.; Korzec, T.; Ramos, A.; Sint, S.; Sommer, R., Determination of the QCD \(\Lambda \)-parameter and the accuracy of perturbation theory at high energies, Phys. Rev. Lett., 117, 18, Article 182001 pp. (2016), arXiv:1604.06193 [hep-ph]
[38] Dalla Brida, M.; Fritzsch, P.; Korzec, T.; Ramos, A.; Sint, S.; Sommer, R., A non-perturbative exploration of the high energy regime in \(N_{\operatorname{f}} = 3\) QCD, Eur. Phys. J. C, 78, 5, 372 (2018), arXiv:1803.10230 [hep-lat]
[39] Cacciari, M.; Houdeau, N., Meaningful characterisation of perturbative theoretical uncertainties, J. High Energy Phys., 09, 039 (2011), arXiv:1105.5152 [hep-ph]
[40] NNPDF Collaboration, R. Abdul Khalek, et al. A first determination of parton distributions with theoretical uncertainties, arXiv:1905.04311 [hep-ph]. · Zbl 1206.81141
[41] Abdul Khalek, R., Parton distributions with theory uncertainties: General formalism and first phenomenological studies, Eur. Phys. J. C, 79, 11, 931 (2019), arXiv:1906.10698 [hep-ph]
[42] Beneke, M., Renormalons, Phys. Rep., 317, 1-142 (1999), arXiv:hep-ph/9807443 [hep-ph]
[43] ’t Hooft, G., Can we make sense out of quantum chromodynamics?, Subnucl. Ser., 15, 943 (1979)
[44] Dalla Brida, M., Past, present, and future of precision determinations of the QCD parameters from lattice QCD, (38th International Symposium on Lattice Field Theory. 12 (2020)), arXiv:2012.01232 [hep-lat]
[45] Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U. J., Topological lattice actions, J. High Energy Phys., 12, 020 (2010), arXiv:1009.2146 [hep-lat] · Zbl 1294.81142
[46] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 8, 2445-2459 (1974)
[47] Nielsen, H. B.; Ninomiya, M., No go theorem for regularizing chiral Fermions, Phys. Lett., 105B, 219-223 (1981)
[48] Karsten, L. H., Lattice Fermions in Euclidean space-time, Phys. Lett. B, 104, 315-319 (1981)
[49] Pelissetto, A., Lattice nonlocal chiral Fermions, Ann. Physics, 182, 177 (1988)
[50] Wilson, K. G., Quarks and strings on a lattice, (New Phenomena in Subnuclear Physics: Proceedings, International School of Subnuclear Physics, Erice, Sicily, Jul 11-Aug 1 1975. Part A, 99 (1975)), [, 0069(1975)]
[51] Sheikholeslami, B.; Wohlert, R., Improved continuum limit lattice action for QCD with Wilson Fermions, Nuclear Phys. B, 259, 572 (1985)
[52] Lüscher, M.; Sint, S.; Sommer, R.; Weisz, P., Chiral symmetry and O(a) improvement in lattice QCD, Nuclear Phys. B, 478, 365-400 (1996), arXiv:hep-lat/9605038 [hep-lat]
[53] R. Sommer, Non-perturbative renormalization of QCD, arXiv:hep-ph/9711243 [hep-ph]. · Zbl 1097.81901
[54] Frezzotti, R.; Rossi, G., Chirally improving wilson fermions. 1. O(a) improvement, J. High Energy Phys., 0408, 007 (2004), arXiv:hep-lat/0306014 [hep-lat]
[55] Shindler, A., Twisted mass lattice QCD, Phys. Rep., 461, 37-110 (2008), arXiv:0707.4093 [hep-lat]
[56] Kogut, J. B.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408 (1975)
[57] Susskind, L., Lattice Fermions, Phys. Rev. D, 16, 3031-3039 (1977)
[58] Marinari, E.; Parisi, G.; Rebbi, C., Monte Carlo simulation of the massive Schwinger model, Nuclear Phys. B, 190, 734 (1981), [, 595(1981)]
[59] Sharpe, S. R., Rooted staggered fermions: Good, bad or ugly?, PoS, LAT2006, 022 (2006), arXiv:hep-lat/0610094 [hep-lat]
[60] Bernard, C.; Golterman, M.; Shamir, Y.; Sharpe, S. R., Comment on ‘Chiral anomalies and rooted staggered fermions’, Phys. Lett. B, 649, 235-240 (2007), arXiv:hep-lat/0603027 [hep-lat] · Zbl 1248.81207
[61] Bernard, C.; Golterman, M.; Shamir, Y.; Sharpe, S. R., ’t Hooft vertices, partial quenching, and rooted staggered QCD, Phys. Rev. D, 77, Article 114504 pp. (2008), arXiv:0711.0696 [hep-lat]
[62] Creutz, M., Chiral anomalies and rooted staggered fermions, Phys. Lett. B, 649, 230-234 (2007), arXiv:hep-lat/0701018 [hep-lat] · Zbl 1248.81208
[63] Luscher, M., Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B, 428, 342-345 (1998), arXiv:hep-lat/9802011 [hep-lat]
[64] Ginsparg, P. H.; Wilson, K. G., A remnant of Chiral symmetry on the lattice, Phys. Rev. D, 25, 2649 (1982)
[65] Neuberger, H., Exactly massless quarks on the lattice, Phys. Lett. B, 417, 141-144 (1998), arXiv:hep-lat/9707022 [hep-lat]
[66] Kaplan, D. B., A method for simulating chiral fermions on the lattice, Phys. Lett. B, 288, 342-347 (1992), arXiv:hep-lat/9206013 [hep-lat]
[67] Shamir, Y., Chiral fermions from lattice boundaries, Nuclear Phys. B, 406, 90-106 (1993), arXiv:hep-lat/9303005 [hep-lat]
[68] Brower, R. C.; Neff, H.; Orginos, K., The Möbius domain wall fermion algorithm, Comput. Phys. Comm., 220, 1-19 (2017), arXiv:1206.5214 [hep-lat] · Zbl 1411.81214
[69] Kaplan, D. B., Chiral symmetry and lattice Fermions, (Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing. Proceedings, International School, 93rd Session, Les Houches, France, (2009) 3-28 (2009)), 223-272, arXiv:0912.2560 [hep-lat]
[70] A.D. Kennedy, Algorithms for dynamical fermions, arXiv:hep-lat/0607038 [hep-lat].
[71] Del Debbio, L.; Giusti, L.; Luscher, M.; Petronzio, R.; Tantalo, N., QCD with light Wilson quarks on fine lattices. II. DD-HMC simulations and data analysis, J. High Energy Phys., 02, 082 (2007), arXiv:hep-lat/0701009 [hep-lat]
[72] Vladikas, A., Three topics in renormalization and improvement, (Les Houches Summer School: Session 93: Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing, 3 (2011)), 161-222, arXiv:1103.1323 [hep-lat]
[73] Lüscher, M., Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Comm. Math. Phys., 104, 177 (1986) · Zbl 0614.58014
[74] Eidelman, S., Review of particle physics. Particle Data Group, Phys. Lett. B, 592, 1 (2004)
[75] A. Ramos, Non-perturbative renormalization by decoupling, in: Talk at The 37th International Symposium on Lattice Field Theory, 2019.
[76] Balog, J.; Niedermayer, F.; Weisz, P., The Puzzle of apparent linear lattice artifacts in the 2d non-linear sigma-model and Symanzik’s solution, Nuclear Phys. B, 824, 563-615 (2010), arXiv:0905.1730 [hep-lat] · Zbl 1196.81159
[77] N. Husung, P. Marquard, R. Sommer, Asymptotic behavior of cutoff effects in Yang-Mills theory and in Wilson’s lattice QCD, arXiv:1912.08498 [hep-lat].
[78] Marciano, W. J.; Sirlin, A., Radiative corrections to pi(lepton 2) decays, Phys. Rev. Lett., 71, 3629-3632 (1993)
[79] Lubicz, V.; Carrasco, N.; Martinelli, G.; Sachrajda, C.; Tantalo, N.; Tarantino, C.; Testa, M., QED corrections to hadronic processes: a strategy for lattice QCD, PoS, CD15, 023 (2016)
[80] Di Carlo, M.; Giusti, D.; Lubicz, V.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N., Light-meson leptonic decay rates in lattice QCD+QED, Phys. Rev. D, 100, 3, Article 034514 pp. (2019), arXiv:1904.08731 [hep-lat]
[81] Sommer, R., A New way to set the energy scale in lattice gauge theories and its applications to the static force and alpha-s in SU(2) Yang-Mills theory, Nuclear Phys. B, 411, 839-854 (1994), arXiv:hep-lat/9310022 [hep-lat]
[82] Bernard, C. W.; Burch, T.; Orginos, K.; Toussaint, D.; DeGrand, T. A.; DeTar, C. E.; Gottlieb, S. A.; Heller, U. M.; Hetrick, J. E.; Sugar, B., The static quark potential in three flavor QCD, Phys. Rev. D, 62, Article 034503 pp. (2000), arXiv:hep-lat/0002028 [hep-lat]
[83] Sommer, R., Scale setting in lattice QCD, PoS, LATTICE2013, 015 (2014), arXiv:1401.3270 [hep-lat]
[84] Lüscher, M., Properties and uses of the Wilson flow in lattice QCD, J. High Energy Phys., 1008, 071 (2010), arXiv:1006.4518 [hep-lat] · Zbl 1291.81393
[85] Narayanan, R.; Neuberger, H., Infinite N phase transitions in continuum wilson loop operators, J. High Energy Phys., 0603, 064 (2006), arXiv:hep-th/0601210 [hep-th] · Zbl 1226.81149
[86] Lüscher, M.; Weisz, P., Perturbative analysis of the gradient flow in non-abelian gauge theories, J. High Energy Phys., 1102, 051 (2011), arXiv:1101.0963 [hep-th] · Zbl 1294.81292
[87] Borsanyi, S.; Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D., High-precision scale setting in lattice QCD, J. High Energy Phys., 1209, 010 (2012), arXiv:1203.4469 [hep-lat]
[88] Leonardo Giusti, Martin Lüscher, Topological susceptibility at \(T > T_{\operatorname{c}}\) from master-field simulations of the SU(3) gauge theory, arXiv:1812.02062 [hep-lat].
[89] Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195, 216-222 (1987)
[90] Del Debbio, L.; Manca, G. M.; Vicari, E., Critical slowing down of topological modes, Phys. Lett. B, 594, 315-323 (2004), arXiv:hep-lat/0403001 [hep-lat]
[91] Schaefer, S.; Sommer, R.; Virotta, F., Critical slowing down and error analysis in lattice QCD simulations, Nuclear Phys. B, 845, 93-119 (2011), arXiv:1009.5228 [hep-lat] · Zbl 1207.81209
[92] Bruno, M.; Korzec, T.; Schaefer, S., Setting the scale for the CLS 2+1 flavor ensembles, Phys. Rev. D, 95, 7, Article 074504 pp. (2017), arXiv:1608.08900 [hep-lat]
[93] Bruno, M., Simulation of QCD with \(N {}_f = 2 + 1\) flavors of non-perturbatively improved Wilson fermions, J. High Energy Phys., 02, 043 (2015), arXiv:1411.3982 [hep-lat]
[94] Wolff, U., Monte Carlo errors with less errors, Comput. Phys. Comm., 156, 143-153 (2004), arXiv:hep-lat/0306017 [hep-lat] · Zbl 1196.65138
[95] Virotta, F., Critical Slowing Down and Error Analysis of Lattice QCD Simulations (2012), Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, (Ph.D. thesis)
[96] Ramos, A., Automatic differentiation for error analysis of Monte Carlo data, Comput. Phys. Comm., 238, 19-35 (2019), arXiv:1809.01289 [hep-lat] · Zbl 07683953
[97] Appelquist, T.; Carazzone, J., Infrared singularities and massive fields, Phys. Rev. D, 11, 2856 (1975)
[98] Binetruy, P.; Schucker, T., Gauge and renormalization scheme dependence in GUTs, Nuclear Phys. B, 178, 293-306 (1981)
[99] Binetruy, P.; Schucker, T., The use of dimensional renormalization schemes in unified theories, Nuclear Phys. B, 178, 307-330 (1981)
[100] Weinberg, S., New approach to the renormalization group, Phys. Rev. D, 8, 3497-3509 (1973)
[101] Wetzel, W., Minimal subtraction and the decoupling of heavy quarks for arbitrary values of the gauge parameter, Nuclear Phys. B, 196, 259-272 (1982)
[102] Chetyrkin, K. G.; Kniehl, B. A.; Steinhauser, M., Decoupling relations to O (alpha-s**3) and their connection to low-energy theorems, Nuclear Phys. B, 510, 61-87 (1998), arXiv:hep-ph/9708255 [hep-ph]
[103] Patrignani, C., Review of particle physics, Chin. Phys. C, 40, 10, Article 100001 pp. (2016)
[104] F. Herren, M. Steinhauser, Version 3 of and , arXiv:1703.03751 [hep-ph].
[105] Bruno, M.; Finkenrath, J.; Knechtli, F.; Leder, B.; Sommer, R., Effects of heavy sea quarks at low energies, Phys. Rev. Lett., 114, 10, Article 102001 pp. (2015), arXiv:1410.8374 [hep-lat]
[106] Sternbeck, A.; Maltman, K.; Muller-Preussker, M.; von Smekal, L., Determination of LambdaMS from the gluon and ghost propagators in Landau gauge, PoS LATTICE, 2012, 243 (2012), arXiv:1212.2039 [hep-lat]
[107] Sternbeck, A.; Ilgenfritz, E. M.; Maltman, K.; Muller-Preussker, M.; von Smekal, L.; Williams, A. G., QCD Lambda parameter from Landau-gauge gluon and ghost correlations, PoS LAT, 2009, 210 (2009), arXiv:1003.1585 [hep-lat]
[108] Takaura, H.; Kaneko, T.; Kiyo, Y.; Sumino, Y., Determination of \(\alpha_s\) from static QCD potential with renormalon subtraction, Phys. Lett. B, 789, 598-602 (2019), arXiv:1808.01632 [hep-ph]
[109] P. Petreczky, J.H. Weber, Strong coupling constant and heavy quark masses in 2+1 flavor QCD, arXiv:1901.06424 [hep-lat].
[110] McNeile, C.; Davies, C. T.H.; Follana, E.; Hornbostel, K.; Lepage, G. P., High-precision c and b masses, and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D, 82, Article 034512 pp. (2010), arXiv:1004.4285 [hep-lat]
[111] Gribov, V. N., Quantization of nonabelian gauge theories, Nuclear Phys. B, 139, 1 (1978), [, 1(1977)]
[112] Vandersickel, N.; Zwanziger, D., The Gribov problem and QCD dynamics, Phys. Rep., 520, 175-251 (2012), arXiv:1202.1491 [hep-th]
[113] Martinelli, G.; Pittori, C.; Sachrajda, C. T.; Testa, M.; Vladikas, A., A General method for nonperturbative renormalization of lattice operators, Nuclear Phys. B, 445, 81-108 (1995), arXiv:hep-lat/9411010
[114] K.G. Chetyrkin, A. Retey, Three loop three linear vertices and four loop similar to MOM beta functions in massless QCD, arXiv:hep-ph/0007088 [hep-ph].
[115] Boucaud, P.; Leroy, J. P.; Le Yaouanc, A.; Lokhov, A. Y.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.; Roiesnel, C., Non-perturbative power corrections to ghost and gluon propagators, J. High Energy Phys., 01, 037 (2006), arXiv:hep-lat/0507005 [hep-lat]
[116] Zafeiropoulos, S.; Boucaud, P.; De Soto, F.; Rodríguez-Quintero, J.; Segovia, J., The strong running coupling from the gauge sector of domain wall lattice QCD with physical quark masses, Phys. Rev. Lett., 122, 16, Article 162002 pp. (2019), arXiv:1902.08148 [hep-ph]
[117] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Du, X.; Gravina, M.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., Ghost-gluon coupling, power corrections and \(\Lambda_{\overline{\operatorname{MS}}}\) from lattice QCD with a dynamical charm, Phys. Rev. D, 85, Article 034503 pp. (2012), arXiv:1110.5829 [hep-lat]
[118] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Du, X.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., The strong running coupling at \(\tau\) and \(Z_0\) mass scales from lattice QCD, Phys. Rev. Lett., 108, Article 262002 pp. (2012), arXiv:1201.5770 [hep-ph]
[119] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., High statistics determination of the strong coupling constant in taylor scheme and its OPE wilson coefficient from lattice QCD with a dynamical charm, Phys. Rev. D, 89, 1, Article 014507 pp. (2014), arXiv:1310.3763 [hep-ph]
[120] Boucaud, P.; De Soto, F.; Raya, K.; Rodríguez-Quintero, J.; Zafeiropoulos, S., Discretization effects on renormalized gauge-field Green’s functions, scale setting, and the gluon mass, Phys. Rev. D, 98, 11, Article 114515 pp. (2018), arXiv:1809.05776 [hep-ph]
[121] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 2445-2459 (1974)
[122] Necco, S.; Sommer, R., The N(f) = 0 heavy quark potential from short to intermediate distances, Nuclear Phys. B, 622, 328-346 (2002), arXiv:hep-lat/0108008 [hep-lat]
[123] Fischler, W., Quark - anti-quark potential in QCD, Nuclear Phys. B, 129, 157-174 (1977)
[124] Billoire, A., How heavy must be quarks in order to build Coulombic q anti-q bound states, Phys. Lett., 92B, 343-347 (1980)
[125] Peter, M., The static potential in QCD: A full two loop calculation, Nuclear Phys. B, 501, 471-494 (1997), arXiv:hep-ph/9702245 [hep-ph]
[126] Schroder, Y., The static potential in QCD to two loops, Phys. Lett. B, 447, 321-326 (1999), arXiv:hep-ph/9812205 [hep-ph]
[127] Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A., The infrared behavior of the static potential in perturbative QCD, Phys. Rev. D, 60, Article 091502 pp. (1999), arXiv:hep-ph/9903355 [hep-ph]
[128] Smirnov, A. V.; Smirnov, V. A.; Steinhauser, M., Three-loop static potential, Phys. Rev. Lett., 104, Article 112002 pp. (2010), arXiv:0911.4742 [hep-ph]
[129] Anzai, C.; Kiyo, Y.; Sumino, Y., Static QCD potential at three-loop order, Phys. Rev. Lett., 104, Article 112003 pp. (2010), arXiv:0911.4335 [hep-ph] · Zbl 1206.81121
[130] Brambilla, N.; Vairo, A.; Garcia i. Tormo, X.; Soto, J., The QCD static energy at NNNLL, Phys. Rev. D, 80, Article 034016 pp. (2009), arXiv:0906.1390 [hep-ph]
[131] Kataev, A. L.; Molokoedov, V. S., Fourth-order QCD renormalization group quantities in the V scheme and the relation of the \(\beta\) function to the Gell-Mann-Low function in QED, Phys. Rev. D, 92, 5, 054008 (2015), arXiv:1507.03547
[132] Garcia i. Tormo, X., Review on the determination of \(\alpha_s\) from the QCD static energy, Modern Phys. Lett. A, 28, Article 1330028 pp. (2013), arXiv:1307.2238 [hep-ph]
[133] Bazavov, A.; Brambilla, N.; Garcia i. Tormo, X.; Petreczky, P.; Soto, J.; Vairo, A., Determination of \(\alpha_s\) from the QCD static energy: An update, Phys. Rev. D, 90, 7, Article 074038 pp. (2014), arXiv:1407.8437 [hep-ph]
[134] Ayala, C.; Lobregat, X.; Pineda, A., Determination of \(\alpha ( M_z )\) from an hyperasymptotic approximation to the energy of a static quark-antiquark pair, J. High Energy Phys., 09, 016 (2020), arXiv:2005.12301 [hep-ph]
[135] R. Sommer, Yang Mills short distance potential and perturbation theory, in: Talk at The 37th International Symposium on Lattice Field Theory, 2019.
[136] Allison, I., High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D, 78, Article 054513 pp. (2008), arXiv:0805.2999 [hep-lat]
[137] Maier, A.; Maierhofer, P.; Marquard, P.; Smirnov, A. V., Low energy moments of heavy quark current correlators at four loops, Nuclear Phys. B, 824, 1-18 (2010), arXiv:0907.2117 [hep-ph] · Zbl 1196.81181
[138] Maier, A.; Maierhofer, P.; Marquard, P., Higher moments of heavy quark correlators in the low energy limit at \(O( \alpha^2 ( s ))\), Nuclear Phys. B, 797, 218-242 (2008), arXiv:0711.2636 [hep-ph]
[139] Boughezal, R.; Czakon, M.; Schutzmeier, T., Charm and bottom quark masses from perturbative QCD, Phys. Rev. D, 74, Article 074006 pp. (2006), arXiv:hep-ph/0605023 [hep-ph]
[140] Chetyrkin, K. G.; Kuhn, J. H.; Sturm, C., Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C, 48, 107-110 (2006), arXiv:hep-ph/0604234 [hep-ph]
[141] Maezawa, Y.; Petreczky, P., Quark masses and strong coupling constant in 2+1 flavor QCD, Phys. Rev. D, 94, 3, Article 034507 pp. (2016), arXiv:1606.08798 [hep-lat]
[142] Nakayama, K.; Fahy, B.; Hashimoto, S., Short-distance charmonium correlator on the lattice with Möbius domain-wall fermion and a determination of charm quark mass, Phys. Rev. D, 94, 5, Article 054507 pp. (2016), arXiv:1606.01002 [hep-lat]
[143] Chakraborty, B.; Davies, C. T.H.; Galloway, B.; Knecht, P.; Koponen, J.; Donald, G. C.; Dowdall, R. J.; Lepage, G. P.; McNeile, C., High-precision quark masses and QCD coupling from \(n_f = 4\) lattice QCD, Phys. Rev. D, 91, 5, Article 054508 pp. (2015), arXiv:1408.4169 [hep-lat]
[144] Lepage, G. P.; Mackenzie, P. B., On the viability of lattice perturbation theory, Phys. Rev. D, 48, 2250-2264 (1993), arXiv:hep-lat/9209022 [hep-lat]
[145] Mason, Q.; Trottier, H. D.; Davies, C. T.H.; Foley, K.; Gray, A.; Lepage, G. P.; Nobes, M.; Shigemitsu, J., Accurate determinations of alpha(s) from realistic lattice QCD, Phys. Rev. Lett., 95, Article 052002 pp. (2005), arXiv:hep-lat/0503005 [hep-lat]
[146] R.J. Hudspith, R. Lewis, K. Maltman, E. Shintani, \( \alpha_s\) from the Lattice Hadronic Vacuum Polarisation, arXiv:1804.10286 [hep-lat].
[147] Shintani, E.; Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Onogi, T.; Yamada, N., Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 89, 9, 099903 (2014), (erratum)
[148] Nakayama, K.; Fukaya, H.; Hashimoto, S., Lattice computation of the Dirac eigenvalue density in the perturbative regime of QCD, Phys. Rev. D, 98, 1, Article 014501 pp. (2018), arXiv:1804.06695 [hep-lat]
[149] R. Sommer, Introduction to Non-perturbative Heavy Quark Effective Theory, arXiv:1008.0710 [hep-lat].
[150] Lüscher, M.; Weisz, P.; Wolff, U., A numerical method to compute the running coupling in asymptotically free theories, Nuclear Phys. B, 359, 221-243 (1991)
[151] Gonzalez-Arroyo, A.; Jurkiewicz, J.; Korthals-Altes, C., Ground state metamorphosis for yang-mills fields on a finite periodic lattice (1981), Freiburg ASI 1981:0339
[152] van Baal, P., Gauge theory in a finite volume, Acta Phys. Polon. B, 20, 295-312 (1989)
[153] ’t Hooft, G., Some twisted selfdual solutions for the yang-mills equations on a hypertorus, Comm. Math. Phys., 81, 267-275 (1981) · Zbl 0475.35075
[154] de Divitiis, G., Universality and the approach to the continuum limit in lattice gauge theory, Nuclear Phys. B, 437, 447-470 (1995), arXiv:hep-lat/9411017 [hep-lat]
[155] Ramos, A., The gradient flow running coupling with twisted boundary conditions, J. High Energy Phys., 1411, 101 (2014), arXiv:1409.1445 [hep-lat] · Zbl 1333.81269
[156] Lüscher, M.; Narayanan, R.; Weisz, P.; Wolff, U., The Schrödinger Functional: a renormalizable probe for non-abelian gauge theories, Nuclear Phys. B, 384, 168-228 (1992), arXiv:hep-lat/9207009 [hep-lat]
[157] Sint, S., On the Schrödinger functional in QCD, Nuclear Phys. B, 421, 135-158 (1994), hep-lat/9312079
[158] Francesconi, Olmo; Panero, Marco; Preti, David, Strong coupling from non-equilibrium Monte Carlo simulations, J. High Energ. Phys., 07, 233 (2020), arXiv:2003.13734
[159] Capitani, S.; Lüscher, M.; Sommer, R.; Wittig, H., Non-perturbative quark mass renormalization in quenched lattice QCD, Nuclear Phys. B, 544, 669-698 (1999), arXiv:hep-lat/9810063 [hep-lat]
[160] Della Morte, M., Computation of the strong coupling in QCD with two dynamical flavors, Nuclear Phys. B, 713, 378-406 (2005), arXiv:hep-lat/0411025 [hep-lat]
[161] Aoki, S., Precise determination of the strong coupling constant in \(N_f = 2 + 1\) lattice QCD with the Schrödinger functional scheme, J. High Energy Phys., 0910, 053 (2009), arXiv:0906.3906 [hep-lat]
[162] Tekin, F.; Sommer, R.; Wolff, U., The running coupling of QCD with four flavors, Nuclear Phys. B, 840, 114-128 (2010), arXiv:1006.0672 [hep-lat] · Zbl 1206.81123
[163] Fritzsch, P.; Ramos, A., The gradient flow coupling in the Schrödinger Functional, J. High Energy Phys., 1310, 008 (2013), arXiv:1301.4388 [hep-lat] · Zbl 1342.81372
[164] Fritzsch, P.; Ramos, A.; Stollenwerk, F., Critical slowing down and the gradient flow coupling in the Schrödinger functional, PoS Lattice, 2013, 461 (2013), arXiv:1311.7304 [hep-lat]
[165] Lüscher, M., Step scaling and the Yang-Mills gradient flow, J. High Energy Phys., 1406, 105 (2014), arXiv:1404.5930 [hep-lat]
[166] Dalla Brida, M.; Fritzsch, P.; Korzec, T.; Ramos, A.; Sint, S.; Sommer, R., Slow running of the Gradient Flow coupling from 200 MeV to 4 GeV in \(N_{\operatorname{f}} = 3\) QCD, Phys. Rev. D, 95, 1, Article 014507 pp. (2017), arXiv:1607.06423 [hep-lat]
[167] Hasenfratz, Anna; Witzel, Oliver, Continuous renormalization group \(\beta\) function from lattice simulations, Phys. Rev. D, 101, 3, 034514 (2020), arXiv:1910.06408
[168] Blum, T.; Boyle, P. A.; Gülpers, V.; Izubuchi, T.; Jin, L.; Jung, C.; Jüttner, A.; Lehner, C.; Portelli, A.; Tsang, J. T., Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett., 121, 2, Article 022003 pp. (2018), arXiv:1801.07224 [hep-lat]
[169] L. Mihaila, J. Salomon, M. Steinhauser, Gauge coupling beta functions in the Standard Model, arXiv:1209.5497 [hep-ph]. [PoSLL2012, 043(2012)].
[170] A. Bazavov, N. Brambilla, X.G. Tormo, I.P. Petreczky, J. Soto, A. Vairo, J.H. Weber, Determination of the QCD coupling from the static energy and the free energy, arXiv:1907.11747 [hep-lat].
[171] Maltman, K.; Leinweber, D.; Moran, P.; Sternbeck, A., The realistic lattice determination of alpha(s)(M(Z)) revisited, Phys. Rev. D, 78, Article 114504 pp. (2008), arXiv:0807.2020 [hep-lat]
[172] Bruno, M.; Dalla Brida, M.; Fritzsch, P.; Korzec, T.; Ramos, A.; Schaefer, S.; Simma, H.; Sint, S.; Sommer, R., QCD coupling from a nonperturbative determination of the three-flavor \(\Lambda\) parameter, Phys. Rev. Lett., 119, 10, Article 102001 pp. (2017), arXiv:1706.03821 [hep-lat]
[173] Proceedings, High-Precision \(\alpha_s\) Measurements from LHC To FCC-Ee (2015), CERN: CERN Geneva, arXiv:1512.05194 [hep-ph], http://lss.fnal.gov/archive/2015/conf/fermilab-conf-15-610-t.pdf
[174] Husung, N.; Koren, M.; Krah, P.; Sommer, R., SU(3) Yang Mills theory at small distances and fine lattices, EPJ Web Conf., 175, 14024 (2018), arXiv:1711.01860 [hep-lat]
[175] Bazavov, A.; Petreczky, P.; Weber, J. H., Equation of state in 2+1 flavor QCD at high temperatures, Phys. Rev. D, 97, 1, Article 014510 pp. (2018), arXiv:1710.05024 [hep-lat]
[176] Davies, C. T.H.; Hornbostel, K.; Kendall, I. D.; Lepage, G. P.; McNeile, C.; Shigemitsu, J.; Trottier, H., Update: Accurate determinations of alpha(s) from realistic lattice QCD, Phys. Rev. D, 78, Article 114507 pp. (2008), arXiv:0807.1687 [hep-lat]
[177] M. Dalla Brida, A. Ramos, The gradient flow coupling at high-energy and the scale of SU(3) Yang-Mills theory, arXiv:1905.05147 [hep-lat].
[178] Dalla Brida, M.; Höllwieser, R.; Knechtli, F.; Korzec, T.; Ramos, A.; Sommer, R., Non-perturbative renormalization by decoupling, Phys. Lett. B, 807, Article 135571 pp. (2020), arXiv:1912.06001 [hep-lat] · Zbl 1473.81121
[179] Gockeler, M.; Horsley, R.; Irving, A. C.; Pleiter, D.; Rakow, P. E.L.; Schierholz, G.; Stuben, H., A determination of the lambda parameter from full lattice QCD, Phys. Rev. D, 73, Article 014513 pp. (2006), arXiv:hep-ph/0502212 [hep-ph]
[180] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa, H. Suzuki, Determination of Reference Scales for Wilson Gauge Action from Yang-Mills Gradient Flowm arXiv:1503.06516 [hep-lat].
[181] Kitazawa, M.; Iritani, T.; Asakawa, M.; Hatsuda, T.; Suzuki, H., Equation of state for SU(3) gauge theory via the energy-momentum tensor under gradient flow, Phys. Rev. D, 94, 11, Article 114512 pp. (2016), arXiv:1610.07810 [hep-lat]
[182] Lüscher, M.; Schaefer, S., Lattice QCD without topology barriers, J. High Energy Phys., 1107, 036 (2011), arXiv:1105.4749 [hep-lat] · Zbl 1298.81399
[183] Brower, R.; Chandrasekharan, S.; Negele, J. W.; Wiese, U. J., QCD at fixed topology, Phys. Lett. B, 560, 64-74 (2003), arXiv:hep-lat/0302005 [hep-lat] · Zbl 1059.81616
[184] Luscher, M., Computational strategies in lattice QCD, (Les Houches Summer School: Session 93: Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing, 2 (2010)), 331-399, arXiv:1002.4232 [hep-lat]
[185] Jäger, B.; Rae, T. D.; Capitani, S.; Della Morte, M.; Djukanovic, D.; von Hippel, G.; Knippschild, B.; Meyer, H. B.; Wittig, H., A high-statistics study of the nucleon EM form factors, axial charge and quark momentum fraction, PoS LATTICE, 2013, 272 (2014), arXiv:1311.5804 [hep-lat]
[186] Capitani, S.; Della Morte, M.; von Hippel, G.; Knippschild, B.; Wittig, H., Scale setting via the \(\Omega\) baryon mass, PoS, LATTICE2011, 145 (2011), arXiv:1110.6365 [hep-lat]
[187] Fritzsch, P.; Knechtli, F.; Leder, B.; Marinkovic, M.; Schaefer, S., The strange quark mass and lambda parameter of two flavor QCD, Nuclear Phys. B, 865, 397-429 (2012), arXiv:1205.5380 [hep-lat] · Zbl 1262.81199
[188] Lottini, S., PoS, LATTICE2013, 315 (2014), arXiv:1311.3081 [hep-lat]
[189] Blum, T., Domain wall QCD with physical quark masses, Phys. Rev. D, 93, 7, Article 074505 pp. (2016), arXiv:1411.7017 [hep-lat]
[190] Chetyrkin, K.; Kuhn, J. H.; Steinhauser, M., RunDec: A mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Comm., 133, 43-65 (2000), arXiv:hep-ph/0004189 · Zbl 0970.81087
[191] Bode, A.; Wolff, U.; Weisz, P., Two loop computation of the Schrodinger functional in pure SU(3) lattice gauge theory, Nuclear Phys. B, 540, 491-499 (1999), arXiv:hep-lat/9809175 [hep-lat]
[192] Bode, A.; Weisz, P.; Wolff, U., Two loop computation of the schrodinger functional in lattice QCD, Nuclear Phys. B. Nuclear Phys. B, Nuclear Phys. B, 600, 453-539 (2001), (erratum)
[193] Peter, M., The static quark - anti-quark potential in QCD to three loops, Phys. Rev. Lett., 78, 602-605 (1997), arXiv:hep-ph/9610209
[194] Smirnov, A. V.; Smirnov, V. A.; Steinhauser, M., Fermionic contributions to the three-loop static potential, Phys. Lett. B, 668, 293-298 (2008), arXiv:0809.1927 [hep-ph]
[195] Chetyrkin, K.; Kuhn, J. H.; Steinhauser, M., Heavy quark current correlators to o (alpha-s**2), Nuclear Phys. B, 505, 40-64 (1997), arXiv:hep-ph/9705254
[196] Broadhurst, D. J., Three loop on-shell charge renormalization without integration: Lambda-MS (QED) to four loops, Z. Phys. C, 54, 599-606 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.