×

Probing extended Higgs sectors by the synergy between direct searches at the LHC and precision tests at future lepton colliders. (English) Zbl 1509.81607

Summary: We discuss a possibility that the parameter space of the two Higgs doublet model is significantly narrowed down by considering the synergy between direct searches for additional Higgs bosons at the LHC and its luminosity upgraded operation and precision measurements of the Higgs boson properties at future electron-positron colliders such as the International Linear Collider. We show that, in the case where the coupling constants of the discovered Higgs boson are slightly different from the predicted values in the standard model, most of the parameter space is explored by the direct searches of extra Higgs bosons, in particular for the decays of the extra Higgs bosons into the discovered Higgs boson, and also by the theoretical arguments such as perturbative unitarity and vacuum stability. This can be done because there appears an upper limit on the mass of the extra Higgs bosons as long as the deviation exists in the Higgs boson coupling. We also show that in the alignment limit where all the Higgs boson couplings take the standard model like values most of the parameter space cannot be excluded because most of the Higgs to Higgs decays are suppressed and also there is no upper limit on the masses from the theoretical arguments.

MSC:

81V15 Weak interaction in quantum theory
81V22 Unified quantum theories
81P15 Quantum measurement theory, state operations, state preparations
81V73 Bosonic systems in quantum theory
62F10 Point estimation
81U90 Particle decays
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aad, G., Combined measurements of Higgs boson production and decay using up to 80 fb^−1 of proton-proton collision data at \(\sqrt{ s} = 13\) TeV collected with the ATLAS experiment, Phys. Rev. D, 101, Article 012002 pp. (2020)
[2] Combined Higgs boson production and decay measurements with up to 137 fb-1 of proton-proton collision data at sqrts = 13 TeV (2020), CERN: CERN Geneva, Tech. Rep. CMS-PAS-HIG-19-005
[3] Aaboud, M., Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb^−1 of pp collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, J. High Energy Phys., 01, Article 055 pp. (2018)
[4] Aad, G., Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Phys. Rev. D, 102, Article 032004 pp. (2020)
[5] Aaboud, M., Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Eur. Phys. J. C, 78, 565 (2018)
[6] Aaboud, M., Search for pair production of Higgs bosons in the \(b \overline{b} b \overline{b}\) final state using proton-proton collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, J. High Energy Phys., 01, Article 030 pp. (2019)
[7] Aaboud, M., Search for heavy resonances decaying into WW in the \(e \nu \mu \nu\) final state in pp collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Eur. Phys. J. C, 78, 24 (2018)
[8] Aaboud, M., Search for heavy ZZ resonances in the \(\ell^+ \ell^- \ell^+ \ell^-\) and \(\ell^+ \ell^- \nu \overline{\nu}\) final states using proton-proton collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Eur. Phys. J. C, 78, 293 (2018)
[9] Aaboud, M., Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb^−1 of \(\sqrt{ s} = 13\) TeV pp collisions with the ATLAS detector, J. High Energy Phys., 03, Article 174 pp. (2018)
[10] Aaboud, M., Search for charged Higgs bosons decaying into top and bottom quarks at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, J. High Energy Phys., 11, Article 085 pp. (2018)
[11] Aaboud, M., Search for charged Higgs bosons decaying via \(H^\pm \to \tau^\pm \nu_\tau\) in the τ+jets and τ+lepton final states with 36 fb^−1 of pp collision data recorded at \(\sqrt{ s} = 13\) TeV with the ATLAS experiment, J. High Energy Phys., 09, Article 139 pp. (2018)
[12] Khachatryan, V., Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, J. High Energy Phys., 02, Article 048 pp. (2017)
[13] Sirunyan, A. M., Search for beyond the standard model Higgs bosons decaying into a \(\operatorname{b} \overline{\operatorname{b}}\) pair in pp collisions at \(\sqrt{ s} = 13\) TeV, J. High Energy Phys., 08, Article 113 pp. (2018)
[14] Sirunyan, A. M., Search for \(\operatorname{t} \overline{\operatorname{t}}\) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, J. High Energy Phys., 07, Article 001 pp. (2017)
[15] Sirunyan, A., Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, Phys. Lett. B, 781, 244-269 (2018)
[16] Khachatryan, V., Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks, Phys. Lett. B, 768, 137-162 (2017)
[17] Sirunyan, A. M., Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at \(\sqrt{ s} = 13\) TeV, Eur. Phys. J. C, 79, 564 (2019)
[18] High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1.
[19] Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S., The international linear collider technical design report - volume 2: physics
[20] Fujii, K., Physics case for the 250 GeV stage of the international linear collider
[21] Asai, S.; Tanaka, J.; Ushiroda, Y.; Nakao, M.; Tian, J.; Kanemura, S., Report by the committee on the scientific case of the ILC operating at 250 GeV as a Higgs factory
[22] Fujii, K., Tests of the standard model at the international linear collider
[23] Bicer, M., First look at the physics case of TLEP, J. High Energy Phys., 01, Article 164 pp. (2014)
[24] C.-S.S. Group, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector.
[25] Dawson, S., Radiative corrections to Higgs boson production, Nucl. Phys. B, 359, 283-300 (1991)
[26] Djouadi, A.; Spira, M.; Zerwas, P., Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B, 264, 440-446 (1991)
[27] Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, P., Higgs boson production at the LHC, Nucl. Phys. B, 453, 17-82 (1995)
[28] Kanemura, S.; Kikuchi, M.; Yagyu, K., Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field, Nucl. Phys. B, 907, 286-322 (2016) · Zbl 1336.81106
[29] Kanemura, S.; Kikuchi, M.; Sakurai, K.; Yagyu, K., Gauge invariant one-loop corrections to Higgs boson couplings in non-minimal Higgs models, Phys. Rev. D, 96, Article 035014 pp. (2017)
[30] Kanemura, S.; Kikuchi, M.; Yagyu, K., One-loop corrections to the Higgs self-couplings in the singlet extension, Nucl. Phys. B, 917, 154-177 (2017) · Zbl 1371.81334
[31] He, S.-P.; Zhu, S.-h., One-loop radiative correction to the triple Higgs coupling in the Higgs singlet model, Phys. Lett. B, 764, 31-37 (2017)
[32] Kanemura, S.; Kikuchi, M.; Mawatari, K.; Sakurai, K.; Yagyu, K., Loop effects on the Higgs decay widths in extended Higgs models, Phys. Lett. B, 783, 140-149 (2018)
[33] Kanemura, S.; Kikuchi, M.; Mawatari, K.; Sakurai, K.; Yagyu, K., Full next-to-leading-order calculations of Higgs boson decay rates in models with non-minimal scalar sectors, Nucl. Phys. B, 949, Article 114791 pp. (2019) · Zbl 1435.81258
[34] Arhrib, A.; Capdequi Peyranere, M.; Hollik, W.; Penaranda, S., Higgs decays in the two Higgs doublet model: large quantum effects in the decoupling regime, Phys. Lett. B, 579, 361-370 (2004)
[35] Arhrib, A.; Benbrik, R.; El Falaki, J.; Hollik, W., Triple Higgs coupling effect on \(h^0 \to b \overline{b}\) and \(h^0 \to \tau^+ \tau^-\) in the 2HDM, Phys. Lett. B, 774, 195-204 (2017)
[36] Kanemura, S.; Okada, Y.; Senaha, E.; Yuan, C.-P., Higgs coupling constants as a probe of new physics, Phys. Rev. D, 70, Article 115002 pp. (2004)
[37] Kanemura, S.; Kikuchi, M.; Yagyu, K., Radiative corrections to the Yukawa coupling constants in two Higgs doublet models, Phys. Lett. B, 731, 27-35 (2014)
[38] Kanemura, S.; Kikuchi, M.; Yagyu, K., Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B, 896, 80-137 (2015) · Zbl 1331.81370
[39] Gu, J.; Li, H.; Liu, Z.; Su, S.; Su, W., Learning from Higgs physics at future Higgs factories, J. High Energy Phys., 12, Article 153 pp. (2017)
[40] Chen, N.; Han, T.; Su, S.; Su, W.; Wu, Y., Type-II 2HDM under the precision measurements at the Z-pole and a Higgs factory, J. High Energy Phys., 03, Article 023 pp. (2019)
[41] Han, T.; Li, S.; Su, S.; Su, W.; Wu, Y., Comparative studies of 2HDMs under the Higgs boson precision measurements
[42] Lopez-Val, D.; Sola, J.; Bernal, N., Quantum effects on Higgs-strahlung events at linear colliders within the general 2HDM, Phys. Rev. D, 81, Article 113005 pp. (2010)
[43] Castilla-Valdez, H.; Moyotl, A.; Perez, M. A.; Honorato, C. G., Sensitivity of the decay \(h \to Z Z^\ast \to Z l + l -\) to the Higgs self-coupling through radiative corrections, Phys. Rev. D, 93, Article 055001 pp. (2016)
[44] Xie, W.; Benbrik, R.; Habjia, A.; Gong, B.; Yan, Q.-S., Signature of 2HDM at Higgs factories
[45] Altenkamp, L.; Dittmaier, S.; Rzehak, H., Renormalization schemes for the two-Higgs-doublet model and applications to \(h \to W W / Z Z \to 4\) fermions, J. High Energy Phys., 09, Article 134 pp. (2017)
[46] Altenkamp, L.; Dittmaier, S.; Rzehak, H., Precision calculations for \(h \to W W / Z Z \to 4\) fermions in the two-Higgs-doublet model with Prophecy4f, J. High Energy Phys., 03, Article 110 pp. (2018)
[47] Altenkamp, L.; Boggia, M.; Dittmaier, S., Precision calculations for \(h \to W W / Z Z \to 4\) fermions in a singlet extension of the Standard Model with Prophecy4f, J. High Energy Phys., 04, Article 062 pp. (2018)
[48] Kanemura, S.; Kikuchi, M.; Sakurai, K., Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings, Phys. Rev. D, 94, Article 115011 pp. (2016)
[49] Arhrib, A.; Benbrik, R.; El Falaki, J.; Jueid, A., Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model, J. High Energy Phys., 12, Article 007 pp. (2015)
[50] Kanemura, S.; Yagyu, K., Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D, 85, Article 115009 pp. (2012)
[51] Aoki, M.; Kanemura, S.; Kikuchi, M.; Yagyu, K., Renormalization of the Higgs sector in the triplet model, Phys. Lett. B, 714, 279-285 (2012)
[52] Aoki, M.; Kanemura, S.; Kikuchi, M.; Yagyu, K., Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D, 87, Article 015012 pp. (2013)
[53] Chiang, C.-W.; Kuo, A.-L.; Yagyu, K., Radiative corrections to Higgs couplings with weak gauge bosons in custodial multi-Higgs models, Phys. Lett. B, 774, 119-122 (2017)
[54] Chiang, C.-W.; Kuo, A.-L.; Yagyu, K., One-loop renormalized Higgs boson vertices in the Georgi-Machacek model, Phys. Rev. D, 98, Article 013008 pp. (2018)
[55] Kanemura, S.; Kikuchi, M.; Sakurai, K.; Yagyu, K., H-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectors, Comput. Phys. Commun., 233, 134-144 (2018) · Zbl 07694818
[56] Kanemura, S.; Kikuchi, M.; Mawatari, K.; Sakurai, K.; Yagyu, K., H-COUP version 2: a program for one-loop corrected Higgs boson decays in non-minimal Higgs sectors, Comput. Phys. Commun., 257, Article 107512 pp. (2020) · Zbl 1515.81210
[57] Krause, M.; Mühlleitner, M.; Spira, M., 2HDECAY—a program for the calculation of electroweak one-loop corrections to Higgs decays in the two-Higgs-doublet model including state-of-the-art QCD corrections, Comput. Phys. Commun., 246, Article 106852 pp. (2020) · Zbl 07678419
[58] Denner, A.; Dittmaier, S.; Mück, A., PROPHECY4F 3.0: a Monte Carlo program for Higgs-boson decays into four-fermion final states in and beyond the Standard Model, Comput. Phys. Commun., 254, Article 107336 pp. (2020) · Zbl 07687581
[59] Haber, H. E.; Kane, G. L., The search for supersymmetry: probing physics beyond the standard model, Phys. Rep., 117, 75-263 (1985)
[60] Gunion, J. F.; Haber, H. E.; Kane, G. L.; Dawson, S., The Higgs Hunter’s Guide, vol. 80 (2000)
[61] Djouadi, A., The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rep., 459, 1-241 (2008)
[62] Bochkarev, A.; Kuzmin, S.; Shaposhnikov, M., Electroweak baryogenesis and the Higgs boson mass problem, Phys. Lett. B, 244, 275-278 (1990)
[63] McLerran, L. D.; Shaposhnikov, M. E.; Turok, N.; Voloshin, M. B., Why the baryon asymmetry of the universe is approximately 10**-10, Phys. Lett. B, 256, 451-456 (1991)
[64] Turok, N.; Zadrozny, J., Electroweak baryogenesis in the two doublet model, Nucl. Phys. B, 358, 471-493 (1991)
[65] Turok, N.; Zadrozny, J., Phase transitions in the two doublet model, Nucl. Phys. B, 369, 729-742 (1992)
[66] Funakubo, K.; Kakuto, A.; Takenaga, K., The effective potential of electroweak theory with two massless Higgs doublets at finite temperature, Prog. Theor. Phys., 91, 341-352 (1994)
[67] Trodden, M., Electroweak baryogenesis, Rev. Mod. Phys., 71, 1463-1500 (1999)
[68] Basler, P.; Krause, M.; Muhlleitner, M.; Wittbrodt, J.; Wlotzka, A., Strong first order electroweak phase transition in the CP-conserving 2HDM revisited, J. High Energy Phys., 02, Article 121 pp. (2017)
[69] Basler, P.; Mühlleitner, M.; Wittbrodt, J., The CP-violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production, J. High Energy Phys., 03, Article 061 pp. (2018)
[70] Zee, A., A theory of lepton number violation, neutrino Majorana mass, and oscillation, Phys. Lett. B, 93, 389 (1980)
[71] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D, 73, Article 077301 pp. (2006)
[72] Aoki, M.; Kanemura, S.; Seto, O., Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett., 102, Article 051805 pp. (2009)
[73] Aoki, M.; Kanemura, S.; Seto, O., A model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D, 80, Article 033007 pp. (2009)
[74] Abdallah, J., Searches for neutral Higgs bosons in extended models, Eur. Phys. J. C, 38, 1-28 (2004)
[75] Schael, S., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C, 47, 547-587 (2006)
[76] Abbiendi, G., Search for charged Higgs bosons: combined results using LEP data, Eur. Phys. J. C, 73, 2463 (2013)
[77] Celis, A.; Ilisie, V.; Pich, A., Towards a general analysis of LHC data within two-Higgs-doublet models, J. High Energy Phys., 12, Article 095 pp. (2013)
[78] Dumont, B.; Gunion, J. F.; Jiang, Y.; Kraml, S., Constraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal, Phys. Rev. D, 90, Article 035021 pp. (2014)
[79] Bernon, J.; Gunion, J. F.; Jiang, Y.; Kraml, S., Light Higgs bosons in two-Higgs-doublet models, Phys. Rev. D, 91, Article 075019 pp. (2015)
[80] Craig, N.; D’Eramo, F.; Draper, P.; Thomas, S.; Zhang, H., The hunt for the rest of the Higgs bosons, J. High Energy Phys., 06, Article 137 pp. (2015)
[81] Bernon, J.; Gunion, J. F.; Haber, H. E.; Jiang, Y.; Kraml, S., Scrutinizing the alignment limit in two-Higgs-doublet models: m_h = 125 GeV, Phys. Rev. D, 92, Article 075004 pp. (2015)
[82] Bernon, J.; Gunion, J. F.; Haber, H. E.; Jiang, Y.; Kraml, S., Scrutinizing the alignment limit in two-Higgs-doublet models. II. m_H = 125 GeV, Phys. Rev. D, 93, Article 035027 pp. (2016)
[83] Chowdhury, D.; Eberhardt, O., Update of global two-Higgs-doublet model fits, J. High Energy Phys., 05, Article 161 pp. (2018)
[84] Su, W.; White, M.; Williams, A. G.; Wu, Y., Exploring the low \(\tan \beta\) region of two Higgs doublet models at the LHC
[85] Kling, F.; Su, S.; Su, W., 2HDM neutral scalars under the LHC, J. High Energy Phys., 06, Article 163 pp. (2020)
[86] Kanemura, S.; Yokoya, H.; Zheng, Y.-J., Complementarity in direct searches for additional Higgs bosons at the LHC and the international linear collider, Nucl. Phys. B, 886, 524-553 (2014)
[87] Kanemura, S.; Tsumura, K.; Yagyu, K.; Yokoya, H., Fingerprinting nonminimal Higgs sectors, Phys. Rev. D, 90, Article 075001 pp. (2014)
[88] Haller, J.; Hoecker, A.; Kogler, R.; Mönig, K.; Peiffer, T.; Stelzer, J., Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C, 78, 675 (2018)
[89] Gunion, J.; Roszkowski, L.; Turski, A.; Haber, H.; Gamberini, G.; Kayser, B., Production mechanisms for nonminimal Higgs bosons at an \(e^+ e^-\) collider, Phys. Rev. D, 38, 3444 (1988)
[90] Djouadi, A.; Haber, H.; Zerwas, P., Multiple production of MSSM neutral Higgs bosons at high-energy \(e^+ e^-\) colliders, Phys. Lett. B, 375, 203-212 (1996)
[91] Kanemura, S.; Moretti, S.; Odagiri, K., Single charged Higgs boson production at next generation linear colliders, J. High Energy Phys., 02, Article 011 pp. (2001)
[92] Moretti, S., Detection of heavy charged Higgs bosons at future linear colliders, Eur. Phys. J. direct, 4, 15 (2002)
[93] Cepeda, M., Report from working group 2: Higgs physics at the HL-LHC and HE-LHC, 7, 221-584 (12, 2019)
[94] Kanemura, S.; Yagyu, K., Unitarity bound in the most general two Higgs doublet model, Phys. Lett. B, 751, 289-296 (2015)
[95] Blasi, S.; De Curtis, S.; Yagyu, K., Extracting the mass scale of a second Higgs boson from a deviation in \(h(125)\) couplings, J. High Energy Phys., 09, Article 091 pp. (2017)
[96] Glashow, S. L.; Weinberg, S., Natural conservation laws for neutral currents, Phys. Rev. D, 15, 1958 (1977)
[97] Georgi, H.; Nanopoulos, D. V., Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B, 82, 95-96 (1979)
[98] Donoghue, J. F.; Li, L. F., Properties of charged Higgs bosons, Phys. Rev. D, 19, 945 (1979)
[99] Gunion, J. F.; Haber, H. E., The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D, 67, Article 075019 pp. (2003)
[100] Barger, V. D.; Hewett, J. L.; Phillips, R. J.N., New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D, 41, 3421-3441 (1990)
[101] Grossman, Y., Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B, 426, 355-384 (1994)
[102] Aoki, M.; Kanemura, S.; Tsumura, K.; Yagyu, K., Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology, Phys. Rev. D, 80, Article 015017 pp. (2009)
[103] Appelquist, T.; Carazzone, J., Infrared singularities and massive fields, Phys. Rev. D, 11, 2856 (1975)
[104] Lee, B. W.; Quigg, C.; Thacker, H., Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D, 16, 1519 (1977)
[105] Kanemura, S.; Kubota, T.; Takasugi, E., Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B, 313, 155-160 (1993)
[106] Akeroyd, A. G.; Arhrib, A.; Naimi, E.-M., Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B, 490, 119-124 (2000)
[107] Ginzburg, I. F.; Ivanov, I. P., Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D, 72, Article 115010 pp. (2005)
[108] Cornwall, J. M.; Levin, D. N.; Tiktopoulos, G., Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D, 10, 1145 (1974)
[109] Deshpande, N. G.; Ma, E., Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D, 18, 2574 (1978)
[110] Klimenko, K., On necessary and sufficient conditions for some Higgs potentials to be bounded from below, Theor. Math. Phys., 62, 58-65 (1985)
[111] Sher, M., Electroweak Higgs potentials and vacuum stability, Phys. Rep., 179, 273-418 (1989)
[112] Nie, S.; Sher, M., Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B, 449, 89-92 (1999)
[113] Barroso, A.; Ferreira, P.; Ivanov, I.; Santos, R., Metastability bounds on the two Higgs doublet model, J. High Energy Phys., 06, Article 045 pp. (2013)
[114] Enomoto, T.; Watanabe, R., Flavor constraints on the two Higgs doublet models of Z_2 symmetric and aligned types, J. High Energy Phys., 05, Article 002 pp. (2016)
[115] Misiak, M.; Rehman, A.; Steinhauser, M., Towards \(\overline{B} \to X_s \gamma\) at the NNLO in QCD without interpolation in m_c, J. High Energy Phys., 06, Article 175 pp. (2020)
[116] Misiak, M.; Steinhauser, M., Weak radiative decays of the B meson and bounds on \(M_{H^\pm}\) in the two-Higgs-doublet model, Eur. Phys. J. C, 77, 201 (2017)
[117] Krawczyk, M.; Temes, D., 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C, 44, 435-446 (2005)
[118] Abe, T.; Sato, R.; Yagyu, K., Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly, J. High Energy Phys., 07, Article 064 pp. (2015)
[119] Djouadi, A., The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rep., 457, 1-216 (2008)
[120] Gorishnii, S.; Kataev, A.; Larin, S.; Surguladze, L., Scheme dependence of the next to next-to-leading QCD corrections to Gamma(tot) (H0 —> hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D, 43, 1633-1640 (1991)
[121] Chetyrkin, K.; Kniehl, B. A.; Steinhauser, M., Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett., 79, 2184-2187 (1997)
[122] Gray, N.; Broadhurst, D. J.; Grafe, W.; Schilcher, K., Three loop relation of quark (modified) Ms and pole masses, Z. Phys. C, 48, 673-680 (1990)
[123] Chetyrkin, K.; Steinhauser, M., Short distance mass of a heavy quark at order \(\alpha_s^3\), Phys. Rev. Lett., 83, 4001-4004 (1999)
[124] Chetyrkin, K.; Steinhauser, M., The relation between the MS-bar and the on-shell quark mass at order alpha(s)**3, Nucl. Phys. B, 573, 617-651 (2000)
[125] Melnikov, K.; Ritbergen, T.v., The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B, 482, 99-108 (2000)
[126] Chetyrkin, K., Quark mass anomalous dimension to O (alpha-s**4), Phys. Lett. B, 404, 161-165 (1997)
[127] Vermaseren, J.; Larin, S.; van Ritbergen, T., The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B, 405, 327-333 (1997)
[128] Chetyrkin, K.; Kniehl, B. A.; Steinhauser, M., Decoupling relations to O (alpha-s**3) and their connection to low-energy theorems, Nucl. Phys. B, 510, 61-87 (1998)
[129] Bernreuther, W.; Wetzel, W., Decoupling of heavy quarks in the minimal subtraction scheme, Nucl. Phys. B, 197, 228-236 (1982)
[130] Bernreuther, W., Decoupling of heavy quarks in quantum chromodynamics, Ann. Phys., 151, 127 (1983)
[131] Mihaila, L.; Schmidt, B.; Steinhauser, M., \( \operatorname{\Gamma}(H \to b \overline{b})\) to order \(\alpha \alpha_s\), Phys. Lett. B, 751, 442-447 (2015)
[132] Gorishnii, S.; Kataev, A.; Larin, S.; Surguladze, L., Corrected three loop QCD correction to the correlator of the quark scalar currents and γ (Tot) \(( H^0\) → hadrons), Mod. Phys. Lett. A, 5, 2703-2712 (1990)
[133] Chetyrkin, K.; Kwiatkowski, A., Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks, Nucl. Phys. B, 461, 3-18 (1996)
[134] Larin, S.; van Ritbergen, T.; Vermaseren, J., The large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons, Phys. Lett. B, 362, 134-140 (1995)
[135] Braaten, E.; Leveille, J., Higgs boson decay and the running mass, Phys. Rev. D, 22, 715 (1980)
[136] Drees, M.; Hikasa, K.-i., Heavy quark thresholds in Higgs physics, Phys. Rev. D, 41, 1547 (1990)
[137] Djouadi, A.; Kalinowski, J.; Spira, M., HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun., 108, 56-74 (1998) · Zbl 0938.81515
[138] Albert, D.; Marciano, W. J.; Wyler, D.; Parsa, Z., Decays of intermediate vector bosons, radiative corrections and QCD jets, Nucl. Phys. B, 166, 460-492 (1980)
[139] Dawson, S.; Kauffman, R., QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D, 49, 2298-2309 (1994)
[140] Harlander, R.; Kant, P., Higgs production and decay: analytic results at next-to-leading order QCD, J. High Energy Phys., 12, Article 015 pp. (2005)
[141] Steinhauser, M., Corrections of \(O (a l p h a - s^{2 )}\) to the decay of an intermediate mass Higgs boson into two photons, (Ringberg Workshop: the Higgs Puzzle - What Can We Learn from LEP2, LHC, NLC, and FMC? (12, 1996)), 177-185
[142] Chetyrkin, K.; Kniehl, B. A.; Steinhauser, M., Hadronic Higgs decay to order alpha-s**4, Phys. Rev. Lett., 79, 353-356 (1997)
[143] Chetyrkin, K.; Kniehl, B. A.; Steinhauser, M.; Bardeen, W. A., Effective QCD interactions of CP odd Higgs bosons at three loops, Nucl. Phys. B, 535, 3-18 (1998)
[144] Djouadi, A.; Gambino, P., QCD corrections to Higgs boson selfenergies and fermionic decay widths, Phys. Rev. D, 51, 218-228 (1995)
[145] Capdequi Peyranere, M.; Haber, H. E.; Irulegui, P., \( H^\pm \to W^\pm \gamma\) and \(H^\pm \to W^\pm Z\) in two Higgs doublet models. 1. The large fermion mass limit, Phys. Rev. D, 44, 191-201 (1991)
[146] Kanemura, S., Enhancement of loop induced \(H^\pm W^\mp Z^0\) vertex in two Higgs doublet model, Phys. Rev. D, 61, Article 095001 pp. (2000)
[147] Diaz-Cruz, J.; Hernandez-Sanchez, J.; Toscano, J., An effective Lagrangian description of charged Higgs decays \(H^+ \to W^+ \gamma, W^+ Z\) and \(W^+\) h0, Phys. Lett. B, 512, 339-348 (2001)
[148] Hernandez-Sanchez, J.; Perez, M.; Tavares-Velasco, G.; Toscano, J., Decay \(H^+ \to W^+ \gamma\) in a nonlinear \(R_\xi \)-gauge, Phys. Rev. D, 69, Article 095008 pp. (2004)
[149] Arhrib, A.; Benbrik, R.; Chabab, M., Charged Higgs bosons decays \(H^\pm \to W^\pm \) (γ, Z) revisited, J. Phys. G, 34, 907-928 (2007)
[150] Abbas, G.; Das, D.; Patra, M., Loop induced \(H^\pm \to W^\pm Z\) decays in the aligned two-Higgs-doublet model, Phys. Rev. D, 98, Article 115013 pp. (2018)
[151] M. Aiko, S. Kanemura, M. Kikuchi, K. Sakurai, K. Yagyu, in preparation.
[152] Buehler, S.; Duhr, C., CHAPLIN - complex harmonic polylogarithms in Fortran, Comput. Phys. Commun., 185, 2703-2713 (2014) · Zbl 1360.33002
[153] Eriksson, D.; Rathsman, J.; Stal, O., 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun., 181, 189-205 (2010) · Zbl 1205.82016
[154] Zyla, P., Rev. Part. Phys. PTEP, 2020 (2020), 083C01
[155] Alekhin, S.; Blumlein, J.; Moch, S., The ABM parton distributions tuned to LHC data, Phys. Rev. D, 89, Article 054028 pp. (2014)
[156] Garden, J.; Heitger, J.; Sommer, R.; Wittig, H., Precision computation of the strange quark’s mass in quenched QCD, Nucl. Phys. B, 571, 237-256 (2000)
[157] Tanabashi, M., Review of particle physics, Phys. Rev. D, 98, Article 030001 pp. (2018)
[158] Krause, M.; Lorenz, R.; Muhlleitner, M.; Santos, R.; Ziesche, H., Gauge-independent renormalization of the 2-Higgs-doublet model, J. High Energy Phys., 09, Article 143 pp. (2016)
[159] Krause, M.; Muhlleitner, M.; Santos, R.; Ziesche, H., Higgs-to-Higgs boson decays in a 2HDM at next-to-leading order, Phys. Rev. D, 95, Article 075019 pp. (2017)
[160] Krause, M.; Mühlleitner, M., Impact of electroweak corrections on neutral Higgs boson decays in extended Higgs sectors, J. High Energy Phys., 04, Article 083 pp. (2020)
[161] Denner, A.; Dittmaier, S.; Lang, J.-N., Renormalization of mixing angles, J. High Energy Phys., 11, Article 104 pp. (2018)
[162] Harlander, R. V.; Liebler, S.; Mantler, H., SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun., 184, 1605-1617 (2013) · Zbl 1297.81163
[163] Harlander, R. V.; Liebler, S.; Mantler, H., SusHi Bento: beyond NNLO and the heavy-top limit, Comput. Phys. Commun., 212, 239-257 (2017)
[164] de Florian, D., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector
[165] Berger, E. L.; Han, T.; Jiang, J.; Plehn, T., Associated production of a top quark and a charged Higgs boson, Phys. Rev. D, 71, Article 115012 pp. (2005)
[166] Dittmaier, S.; Kramer, M.; Spira, M.; Walser, M., Charged-Higgs-boson production at the LHC: NLO supersymmetric QCD corrections, Phys. Rev. D, 83, Article 055005 pp. (2011)
[167] Flechl, M.; Klees, R.; Kramer, M.; Spira, M.; Ubiali, M., Improved cross-section predictions for heavy charged Higgs boson production at the LHC, Phys. Rev. D, 91, Article 075015 pp. (2015)
[168] Degrande, C.; Ubiali, M.; Wiesemann, M.; Zaro, M., Heavy charged Higgs boson production at the LHC, J. High Energy Phys., 10, Article 145 pp. (2015)
[169] Aad, G., Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at \(\sqrt{ s} = 13\) TeV, Phys. Rev. Lett., 125, Article 051801 pp. (2020)
[170] Arbey, A.; Mahmoudi, F.; Stal, O.; Stefaniak, T., Status of the charged Higgs boson in two Higgs doublet models, Eur. Phys. J. C, 78, 182 (2018)
[171] Arhrib, A.; Benbrik, R.; Harouiz, H.; Moretti, S.; Rouchad, A., A guidebook to hunting charged Higgs bosons at the LHC
[172] Dicus, D.; Hewett, J.; Kao, C.; Rizzo, T., \( W^\pm H^\mp\) production at hadron colliders, Phys. Rev. D, 40, 787 (1989)
[173] Barrientos Bendezu, A.; Kniehl, B. A., \( W^\pm H^\mp\) associated production at the large hadron collider, Phys. Rev. D, 59, Article 015009 pp. (1999)
[174] Moretti, S.; Odagiri, K., The phenomenology of \(W^\pm H^\mp\) production at the large hadron collider, Phys. Rev. D, 59, Article 055008 pp. (1999)
[175] Akeroyd, A., Prospects for charged Higgs searches at the LHC, Eur. Phys. J. C, 77, 276 (2017)
[176] Moretti, S., Pair production of charged Higgs scalars from electroweak gauge boson fusion, J. Phys. G, 28, 2567-2582 (2002)
[177] Alves, A.; Plehn, T., Charged Higgs boson pairs at the CERN LHC, Phys. Rev. D, 71, Article 115014 pp. (2005)
[178] Brein, O.; Hollik, W.; Kanemura, S., The MSSM prediction for \(W^\pm H^\pm\) production by gluon fusion, Phys. Rev. D, 63, Article 095001 pp. (2001)
[179] Brein, O.; Hollik, W., Pair production of charged MSSM Higgs bosons by gluon fusion, Eur. Phys. J. C, 13, 175-184 (2000)
[180] Kanemura, S.; Tsumura, K.; Yokoya, H., Multi-tau-lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D, 85, Article 095001 pp. (2012)
[181] Aad, G., A search for \(t \overline{t}\) resonances using lepton-plus-jets events in proton-proton collisions at \(\sqrt{ s} = 8\) TeV with the ATLAS detector, J. High Energy Phys., 08, Article 148 pp. (2015)
[182] Passarino, G.; Veltman, M. J.G., One loop corrections for \(e^+ e^-\) annihilation into \(\mu^+ \mu^-\) in the Weinberg model, Nucl. Phys. B, 160, 151-207 (1979)
[183] Kanemura, S., Possible enhancement of the \(e^+ e^- \to H^\pm W^\mp\) cross-section in the two Higgs doublet model, Eur. Phys. J. C, 17, 473-486 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.