×

Phenomenology of fermion dark matter as neutrino mass mediator with gauged \(B-L\). (English) Zbl 07408517

Summary: We analyze a model with unbroken \(U(1)_{B-L}\) gauge symmetry where neutrino masses are generated at one loop, after spontaneous breaking of a global \(U(1)_G\) symmetry. These symmetries ensure dark matter (DM) stability and the Diracness of neutrinos. Within this context, we examine fermionic dark matter. Consistency between the required neutrino mass and the observed relic abundance indicates dark matter masses and couplings within the reach of direct detection experiments.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory

Software:

Spheno
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] de Salas, P., 2020 global reassessment of the neutrino oscillation picture, J. High Energy Phys., 02, Article 144 pp. (2021)
[2] Aghanim, N., Planck 2018 results. VI. Cosmological parameters
[3] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D, 73, Article 077301 pp. (2006)
[4] Hirsch, M., WIMP dark matter as radiative neutrino mass messenger, J. High Energy Phys., 1310, Article 149 pp. (2013)
[5] Merle, A., Consistency of WIMP Dark Matter as radiative neutrino mass messenger, J. High Energy Phys., 1607, Article 013 pp. (2016)
[6] Ávila, I. M., Phenomenology of scotogenic scalar dark matter, Eur. Phys. J. C, 80, 10, 908 (2020)
[7] Boehm, C.; Farzan, Y.; Hambye, T.; Palomares-Ruiz, S.; Pascoli, S., Is it possible to explain neutrino masses with scalar dark matter?, Phys. Rev. D, 77, Article 043516 pp. (2008)
[8] Farzan, Y., A minimal model linking two great mysteries: neutrino mass and dark matter, Phys. Rev. D, 80, Article 073009 pp. (2009)
[9] Farzan, Y.; Ma, E., Dirac neutrino mass generation from dark matter, Phys. Rev. D, 86, Article 033007 pp. (2012)
[10] Van Dong, P., Asymmetric Dark Matter, Inflation and Leptogenesis from \(B - L\) Symmetry Breaking, Phys. Rev. D, 99, 5, Article 055040 pp. (2019)
[11] Kang, S. K., Scotogenic dark matter stability from gauged matter parity, Phys. Lett. B, 798, Article 135013 pp. (2019) · Zbl 1434.81158
[12] Leite, J., A theory for scotogenic dark matter stabilised by residual gauge symmetry, Phys. Lett. B, 802, Article 135254 pp. (2020) · Zbl 1435.83064
[13] Cárcamo Hernández, A. E.; Valle, J. W.F.; Vaquera-Araujo, C. A., Simple theory for scotogenic dark matter with residual matter-parity, Phys. Lett. B, 809, Article 135757 pp. (2020) · Zbl 1473.83028
[14] Calle, J.; Restrepo, D.; Zapata, O., Dirac neutrino mass generation from a Majorana messenger, Phys. Rev. D, 101, 3, Article 035004 pp. (2020)
[15] Reig, M., Bound-state dark matter and Dirac neutrino masses, Phys. Rev. D, 97, Article 115032 pp. (2018)
[16] Leite, J.; Morales, A.; Valle, J. W.F.; Vaquera-Araujo, C. A., Scotogenic dark matter and Dirac neutrinos from unbroken gauged B − L symmetry, Phys. Lett. B, 807, Article 135537 pp. (2020) · Zbl 1473.83036
[17] Bonilla, C.; Valle, J. W.F., Naturally light neutrinos in Diracon model, Phys. Lett. B, 762, 162-165 (2016) · Zbl 1390.81676
[18] Bonilla, C.; Ma, E.; Peinado, E.; Valle, J. W.F., Two-loop Dirac neutrino mass and WIMP dark matter, Phys. Lett. B, 762, 214-218 (2016) · Zbl 1390.81675
[19] Gherghetta, T.; Kersten, J.; Olive, K.; Pospelov, M., Evaluating the price of tiny kinetic mixing, Phys. Rev. D, 100, 9, Article 095001 pp. (2019)
[20] Williams, M.; Burgess, C. P.; Maharana, A.; Quevedo, F., New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, J. High Energy Phys., 08, Article 106 pp. (2011)
[21] Ruegg, H.; Ruiz-Altaba, M., The Stueckelberg field, Int. J. Mod. Phys. A, 19, 3265-3348 (2004) · Zbl 1080.81041
[22] Profumo, S.; Giani, L.; Piattella, O. F., An introduction to particle dark matter, 5, 213 (2019)
[23] Aprile, E., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett., 121, 11, Article 111302 pp. (2018)
[24] Heeck, J., Unbroken B - L symmetry, Phys. Lett. B, 739, 256-262 (2014) · Zbl 1306.81417
[25] Joshipura, A. S.; Valle, J. W.F., Invisible Higgs decays and neutrino physics, Nucl. Phys. B, 397, 1, 105-122 (1993)
[26] Bonilla, C.; Valle, J. W.F.; Romao, J. C., Neutrino mass and invisible Higgs decays at the LHC, Phys. Rev. D, 91, 11, Article 113015 pp. (2015)
[27] Bonilla, C.; Romao, J. C.; Valle, J. W.F., Electroweak breaking and neutrino mass: invisible Higgs decays at the LHC (type II seesaw), New J. Phys., 18, 3, Article 033033 pp. (2016)
[28] Fontes, D.; Romao, J. C.; Valle, J. W., Electroweak breaking and Higgs boson profile in the simplest linear seesaw model, J. High Energy Phys., 1910, Article 245 pp. (2019)
[29] Aaboud, M., Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett., 122, 23, Article 231801 pp. (2019)
[30] Sirunyan, A. M., Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, Phys. Lett. B, 793, 520-551 (2019)
[31] Gonzalez-Garcia, M.; Valle, J. W.F., Cosmological constraints on additional light neutrinos and neutral gauge bosons, Phys. Lett. B, 240, 163-169 (1990)
[32] Solaguren-Beascoa, A.; Gonzalez-Garcia, M., Dark radiation confronting LHC in Z’ models, Phys. Lett. B, 719, 121-125 (2013)
[33] Fileviez Pérez, P.; Murgui, C.; Plascencia, A. D., Neutrino-dark matter connections in gauge theories, Phys. Rev. D, 100, 3, Article 035041 pp. (2019)
[34] Gondolo, P.; Gelmini, G., Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B, 360, 1, 145-179 (1991)
[35] Blennow, M.; Fernandez-Martinez, E.; Mena, O.; Redondo, J.; Serra, P., Asymmetric dark matter and dark radiation, J. Cosmol. Astropart. Phys., 07, Article 022 pp. (2012)
[36] Dong, P. V., The dark side of flipped trinification, J. High Energy Phys., 04, Article 143 pp. (2018)
[37] Blanco, C.; Escudero, M.; Hooper, D.; Witte, S. J., Z’ mediated WIMPs: dead, dying, or soon to be detected?, J. Cosmol. Astropart. Phys., 11, Article 024 pp. (2019)
[38] Han, C.; López-Ibáñez, M.; Peng, B.; Yang, J. M., Dirac dark matter in \(U ( 1 )_{B - L}\) with the Stueckelberg mechanism, Nucl. Phys. B, 959, Article 115154 pp. (2020) · Zbl 1473.83033
[39] Bai, Y.; Berger, J., Lepton portal dark matter, J. High Energy Phys., 08, Article 153 pp. (2014)
[40] Okawa, S.; Omura, Y., Light mass window of lepton portal dark matter
[41] Blennow, M.; Fernandez-Martinez, E.; Olivares-Del Campo, A.; Pascoli, S.; Rosauro-Alcaraz, S.; Titov, A., Neutrino portals to dark matter, Eur. Phys. J. C, 79, 7, 555 (2019)
[42] Heister, A., Search for charged Higgs bosons in \(e^+ e^-\) collisions at energies up to \(\sqrt{ s} = 209\)-GeV, Phys. Lett. B, 543, 1-13 (2002)
[43] Aad, G., Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \(\sqrt{ s} = 13\) TeV pp collisions using the ATLAS detector, Eur. Phys. J. C, 80, 2, 123 (2020)
[44] Aad, G., Search for direct stau production in events with two hadronic τ-leptons in \(\sqrt{ s} = 13\) TeV pp collisions with the ATLAS detector, Phys. Rev. D, 101, 3, Article 032009 pp. (2020)
[45] Farzan, Y.; Hashemi, M., SLIM at LHC: LHC search power for a model linking dark matter and neutrino mass, J. High Energy Phys., 11, Article 029 pp. (2010)
[46] Staub, F., Exploring new models in all detail with SARAH, Adv. High Energy Phys., 2015, Article 840780 pp. (2015) · Zbl 1366.83027
[47] Porod, W., Spheno, a program for calculating supersymmetric spectra, susy particle decays and susy particle production at ee colliders, Comput. Phys. Commun., 153, 275-315 (02, 2003)
[48] Bélanger, G.; Boudjema, F.; Goudelis, A.; Pukhov, A.; Zaldivar, B., micrOMEGAs5.0: freeze-in, Comput. Phys. Commun., 231, 173-186 (2018)
[49] Lattanzi, M.; Gerbino, M.; Freese, K.; Kane, G.; Valle, J. W., Cornering (quasi) degenerate neutrinos with cosmology, J. High Energy Phys., 2010, Article 213 pp. (2020)
[50] Aker, M., An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN
[51] Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O.; Serpico, P. D., Primordial Nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rep., 472, 1-76 (2009)
[52] Nollett, K. M.; Steigman, G., BBN and the CMB constrain neutrino coupled light WIMPs, Phys. Rev. D, 91, 8, Article 083505 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.