×

Structured input-output analysis of transitional wall-bounded flows. (English) Zbl 1481.76095

Summary: Input-output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, in the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured-singular-value-based approach that preserves certain input-output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input-output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition, in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of a wider range of known transitional flow structures within the analytical input-output modelling paradigm.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
76F06 Transition to turbulence
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Balas, G., Chiang, R., Packard, A. & Safonov, M.2005 Robust control toolbox. For Use with Matlab. User’s Guide, Version 3.
[2] Bamieh, B. & Dahleh, M.2001Energy amplification in channel flows with stochastic excitation. Phys. Fluids13 (11), 3258-3269. · Zbl 1184.76042
[3] Barkley, D.2016Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech.803, P1. · Zbl 1454.76047
[4] Barkley, D. & Tuckerman, L.S.2007Mean flow of turbulent-laminar patterns in plane Couette flow. J. Fluid Mech.576, 109-137. · Zbl 1124.76018
[5] Bottin, S., Dauchot, O., Daviaud, F. & Manneville, P.1998Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys. Fluids10 (10), 2597- 2607.
[6] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)47, 80-96. · Zbl 1297.76073
[7] Butler, K.M. & Farrell, B.F.1992Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A4 (8), 1637-1650.
[8] Chapman, S.J.2002Subcritical transition in channel flows. J. Fluid Mech.451, 35-97. · Zbl 1037.76023
[9] Cherubini, S. & De Palma, P.2013Nonlinear optimal perturbations in a Couette flow: bursting and transition. J. Fluid Mech.716, 251-279. · Zbl 1284.76135
[10] Cherubini, S. & De Palma, P.2015Minimal-energy perturbations rapidly approaching the edge state in Couette flow. J. Fluid Mech.764, 572-598.
[11] Chevalier, M., Hœpffner, J., Bewley, T.R. & Henningson, D.S.2006State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech.552, 167-187. · Zbl 1134.76353
[12] De Souza, D., Bergier, T. & Monchaux, R.2020Transient states in plane Couette flow. J. Fluid Mech.903, A33. · Zbl 1460.76380
[13] Deguchi, K. & Hall, P.2015Asymptotic descriptions of oblique coherent structures in shear flows. J. Fluid Mech.782, 356-367. · Zbl 1381.76088
[14] Doyle, J.1982Analysis of feedback systems with structured uncertainties. IEE Proc. D-Control Theory Appl.129 (6), 242-250.
[15] Duguet, Y., Brandt, L. & Larsson, B.R.J.2010aTowards minimal perturbations in transitional plane Couette flow. Phys. Rev. E82 (2), 026316.
[16] Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D.S.2013Minimal transition thresholds in plane Couette flow. Phys. Fluids25 (8), 084103.
[17] Duguet, Y. & Schlatter, P.2013Oblique laminar-turbulent interfaces in plane shear flows. Phys. Rev. Lett.110 (3), 034502.
[18] Duguet, Y., Schlatter, P. & Henningson, D.S.2010bFormation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech.650, 119-129. · Zbl 1189.76254
[19] Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39 (1), 447-468. · Zbl 1296.76062
[20] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18 (4), 487-488. · Zbl 0308.76030
[21] Elofsson, P.A. & Alfredsson, P.H.1998An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech.358, 177-202.
[22] Farano, M., Cherubini, S., Robinet, J.C. & De Palma, P.2015Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech.775, R2. · Zbl 1403.76022
[23] Farano, M., Cherubini, S., Robinet, J.C. & De Palma, P.2016Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn. Res.48 (6), 061409. · Zbl 1403.76022
[24] Farrell, B.F. & Ioannou, P.J.1993Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A5 (11), 2600-2609. · Zbl 0809.76078
[25] Gustavsson, L.H.1991Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech.224, 241-260. · Zbl 0717.76044
[26] Hashimoto, S., Hasobe, A., Tsukahara, T., Kawaguchi, Y. & Kawamura, H.2009 An experimental study on turbulent-stripe structure in transitional channel flow. In Proceedings of the Sixth International Symposium on Turbulence Heat and Mass Transfer. Rome.
[27] Hœpffner, J., Chevalier, M., Bewley, T.R. & Henningson, D.S.2005State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech.534, 263-294. · Zbl 1134.76354
[28] Hof, B., Juel, A. & Mullin, T.2003Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett.91 (24), 244502. · Zbl 1049.76511
[29] Hwang, Y. & Cossu, C.2010aAmplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech.643, 333-348. · Zbl 1189.76191
[30] Hwang, Y. & Cossu, C.2010bLinear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech.664, 51-73. · Zbl 1221.76104
[31] Illingworth, S.J.2020Streamwise-constant large-scale structures in Couette and Poiseuille flows. J. Fluid Mech.889, A13.
[32] Illingworth, S.J., Monty, J.P. & Marusic, I.2018Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech.842, 146-162. · Zbl 1419.76392
[33] Jovanović, M. & Bamieh, B.2001 Modeling flow statistics using the linearized Navier-Stokes equations. In Proceedings of the 40th IEEE Conference on Decision and Control, pp. 4944-4949. IEEE.
[34] Jovanović, M.R.2004 Modeling, analysis, and control of spatially distributed systems. PhD thesis, University of California at Santa Barbara.
[35] Jovanović, M.R.2021From bypass transition to flow control and data-driven turbulence modeling: an input-output viewpoint. Annu. Rev. Fluid Mech.53 (1), 311-345. · Zbl 1459.76072
[36] Jovanović, M.R. & Bamieh, B.2004 Unstable modes versus non-normal modes in supercritical channel flows. In Proceedings of the 2004 American Control Conference, pp. 2245-2250. IEEE.
[37] Jovanović, M.R. & Bamieh, B.2005Componentwise energy amplification in channel flows. J. Fluid Mech.534, 145-183. · Zbl 1074.76016
[38] Kalur, A., Mushtaq, T., Seiler, P. & Hemati, M.S.2021aEstimating regions of attraction for transitional flows using quadratic constraints. IEEE Control Syst. Lett.6, 482-487.
[39] Kalur, A., Seiler, P. & Hemati, M.S.2020 Stability and performance analysis of nonlinear and non-normal systems using quadratic constraints. AIAA Scitech 2020 Forum, p. 0833.
[40] Kalur, A., Seiler, P. & Hemati, M.S.2021bNonlinear stability analysis of transitional flows using quadratic constraints. Phys. Rev. Fluids6 (4), 044401.
[41] Kanazawa, T.2018 Lifetime and growing process of localized turbulence in plane channel flow. PhD thesis, Osaka University.
[42] Kerswell, R.R.2018Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech.50 (1), 319-345. · Zbl 1384.76022
[43] Kerswell, R.R., Pringle, C.C. & Willis, A.P.2014An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys.77 (8), 085901.
[44] Kreiss, G., Lundbladh, A. & Henningson, D.S.1994Bounds for threshold amplitudes in subcritical shear flows. J. Fluid Mech.270, 175-198. · Zbl 0813.76024
[45] Landahl, M.T.1975Wave breakdown and turbulence. SIAM J. Appl. Maths28 (4), 735-756. · Zbl 0276.76023
[46] Liu, C. & Gayme, D.F.2019 Convective velocities of vorticity fluctuations in turbulent channel flows: an input-output approach. In Proceedings of the Eleventh International Symposium on Turbulence and Shear Flow Phenomenon, Southampton, UK.
[47] Liu, C. & Gayme, D.F.2020aAn input-output based analysis of convective velocity in turbulent channels. J. Fluid Mech.888, A32. · Zbl 1460.76478
[48] Liu, C. & Gayme, D.F.2020bInput-output inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows. Phys. Rev. E102 (6), 063108.
[49] Lundbladh, A., Henningson, D.S. & Reddy, S.C.1994 Threshold amplitudes for transition in channel flows. In Transition, Turbulence and Combustion (ed. M.Y. Hussaini, T.B. Gatski & T.L. Jackson), pp. 309-318. Springer.
[50] Madhusudanan, A., Illingworth, S.J. & Marusic, I.2019Coherent large-scale structures from the linearized Navier-Stokes equations. J. Fluid Mech.873, 89-109. · Zbl 1419.76321
[51] Mckeon, B.J.2017The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech.817, P1. · Zbl 1383.76239
[52] Mckeon, B.J. & Sharma, A.S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[53] Mckeon, B.J., Sharma, A.S. & Jacobi, I.2013Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids25 (3), 031301.
[54] Mellibovsky, F. & Meseguer, A.2009Critical threshold in pipe flow transition. Phil. Trans. R. Soc. Lond. A367 (1888), 545-560. · Zbl 1221.76096
[55] Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D.S.2011Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett.106 (13), 134502.
[56] Morra, P., Nogueira, P.A.S., Cavalieri, A.V.G. & Henningson, D.S.2021The colour of forcing statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech.907, A24. · Zbl 1461.76283
[57] Mullin, T.2011Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech.43 (1), 1-24. · Zbl 1210.76005
[58] Nogueira, P.A.S., Morra, P., Martini, E., Cavalieri, A.V.G. & Henningson, D.S.2021Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow. J. Fluid Mech.908, A32. · Zbl 1492.76070
[59] Orszag, S.A.1971Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech.50 (4), 689-703. · Zbl 0237.76027
[60] Packard, A. & Doyle, J.1993The complex structured singular value. Automatica29 (1), 71-109. · Zbl 0772.93023
[61] Paranjape, C.S.2019 Onset of turbulence in plane Poiseuille flow. PhD thesis, Institute of Science and Technology, Austria.
[62] Paranjape, C.S., Duguet, Y. & Hof, B.2020Oblique stripe solutions of channel flow. J. Fluid Mech.897, A7. · Zbl 1460.76398
[63] Peixinho, J. & Mullin, T.2007Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech.582, 169-178. · Zbl 1114.76304
[64] Philip, J., Svizher, A. & Cohen, J.2007Scaling law for a subcritical transition in plane Poiseuille flow. Phys. Rev. Lett.98 (15), 154502.
[65] Prigent, A., Grégoire, G., Chaté, H. & Dauchot, O.2003Long-wavelength modulation of turbulent shear flows. Physica D174 (1-4), 100-113. · Zbl 1036.76023
[66] Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & Van Saarloos, W.2002Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett.89 (1), 014501. · Zbl 1036.76023
[67] Pringle, C.C.T. & Kerswell, R.R.2010Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett.105 (15), 154502.
[68] Pringle, C.C.T., Willis, A.P. & Kerswell, R.R.2012Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech.702, 415-443. · Zbl 1248.76075
[69] Rabin, S.M.E., Caulfield, C.P. & Kerswell, R.R.2012Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech.712, 244-272. · Zbl 1275.76091
[70] Reddy, S.C. & Henningson, D.S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[71] Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S.1998On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech.365, 269-303. · Zbl 0927.76029
[72] Reetz, F., Kreilos, T. & Schneider, T.M.2019Exact invariant solution reveals the origin of self-organized oblique turbulent-laminar stripes. Nat. Commun.10 (1), 2277.
[73] Reynolds, O.1883XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond.174, 935-982. · JFM 16.0845.02
[74] Romanov, V.A.1973Stability of plane-parallel Couette flow. Funct. Anal. Applics.7 (2), 137-146. · Zbl 0287.76037
[75] Safonov, M.G.1982Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. D-Control Theory Appl.129 (6), 251-256.
[76] Schmid, P.J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39, 129-162. · Zbl 1296.76055
[77] Schmid, P.J. & Henningson, D.S.1992A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids A4 (9), 1986-1989.
[78] Schmid, P.J. & Henningson, D.S.2001Stability and Transition in Shear Flows. Springer Science & Business Media. · Zbl 0966.76003
[79] Shimizu, M. & Manneville, P.2019Bifurcations to turbulence in transitional channel flow. Phys. Rev. Fluids4 (11), 113903.
[80] Song, B. & Xiao, X.2020Trigger turbulent bands directly at low Reynolds numbers in channel flow using a moving-force technique. J. Fluid Mech.903, A43. · Zbl 1460.76403
[81] Symon, S., Illingworth, S.J. & Marusic, I.2021Energy transfer in turbulent channel flows and implications for resolvent modelling. J. Fluid Mech.911, A3. · Zbl 1461.76184
[82] Tao, J.J., Eckhardt, B. & Xiong, X.M.2018Extended localized structures and the onset of turbulence in channel flow. Phys. Rev. Fluids3 (1), 011902.
[83] Tillmark, N. & Alfredsson, P.H.1992Experiments on transition in plane Couette flow. J. Fluid Mech.235, 89-102.
[84] Trefethen, L.N.2000Spectral Methods in MATLAB. SIAM. · Zbl 0953.68643
[85] Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A.1993Hydrodynamic stability without eigenvalues. Science261 (5121), 578-584. · Zbl 1226.76013
[86] Tsukahara, T., Seki, Y., Kawamura, H. & Tochio, D.2005 DNS of turbulent channel flow at very low Reynolds numbers. In Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamsburg, USA.
[87] Tuckerman, L.S. & Barkley, D.2011Patterns and dynamics in transitional plane Couette flow. Phys. Fluids23 (4), 041301. · Zbl 1308.76135
[88] Tuckerman, L.S., Chantry, M. & Barkley, D.2020Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech.52 (1), 343-367. · Zbl 1439.76032
[89] Tuckerman, L.S., Kreilos, T., Schrobsdorff, H., Schneider, T.M. & Gibson, J.F.2014Turbulent-laminar patterns in plane Poiseuille flow. Phys. Fluids26 (11), 114103.
[90] Vadarevu, S.B., Symon, S., Illingworth, S.J. & Marusic, I.2019Coherent structures in the linearized impulse response of turbulent channel flow. J. Fluid Mech.863, 1190-1203. · Zbl 1415.76366
[91] Weideman, J.A.C. & Reddy, S.C.2000A MATLAB differentiation matrix suite. ACM Trans. Math. Softw.26 (4), 465-519.
[92] Xiao, X. & Song, B.2020The growth mechanism of turbulent bands in channel flow at low Reynolds numbers. J. Fluid Mech.883, R1. · Zbl 1430.76322
[93] Xiong, X., Tao, J., Chen, S. & Brandt, L.2015Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers. Phys. Fluids27 (4), 041702.
[94] Zare, A., Jovanović, M.R. & Georgiou, T.T.2017Colour of turbulence. J. Fluid Mech.812, 636-680. · Zbl 1383.76303
[95] Zhou, K., Doyle, J.C. & Glover, K.1996Robust and Optimal Control. Prentice Hall. · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.