×

A Galerkin-collocation domain decomposition method: application to the evolution of cylindrical gravitational waves. (English) Zbl 1478.83052

Summary: We present a Galerkin-collocation domain decomposition algorithm applied to the evolution of cylindrical unpolarized gravitational waves. We show the effectiveness of the algorithm in reproducing initial data with high localized gradients and in providing highly accurate dynamics. We characterize the gravitational radiation with the standard Newman-Penrose Weyl scalar \(\Psi_4\). We generate wave templates for both polarization modes, \(\times\) and \(+\), outgoing and ingoing, to show how they exchange energy nonlinearly. In particular, considering an initially ingoing \(\times\) wave, we were able to trace a possible imprint of the gravitational analog of the Faraday effect in the generated templates.

MSC:

83C35 Gravitational waves
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations

Software:

SpEC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Grandclément P and Novak J 2009 Living Rev. Relativ.12 1 · Zbl 1166.83004 · doi:10.12942/lrr-2009-1
[2] Kidder L E and Finn L S 2000 Phys. Rev. D 62 084026 · doi:10.1103/PhysRevD.62.084026
[3] Canuto C, Quarteroni A, Hussaini M Y and Zang T A 1988 Spectral Methods in Fluid Dynamics (Berlin: Springer) · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[4] Gottlieb D and Hesthaven J S 2001 J. Comput. Appl. Math.128 83 (Special issue on Numerical Analysis, Vol VII: Partial Differential Equations) · Zbl 0974.65093 · doi:10.1016/S0377-0427(00)00510-0
[5] Gottlieb D and Orszag S A 1977 Numerical Analysis of Spectral Methods: Theory and Applications (Philadelphia, PA: SIAM) · Zbl 0412.65058 · doi:10.1137/1.9781611970425
[6] Kopriva D A 1986 Appl. Numer. Math.2 221 · Zbl 0601.76087 · doi:10.1016/0168-9274(86)90030-9
[7] Orszag S 1980 J. Comput. Phys.37 70 · Zbl 0476.65078 · doi:10.1016/0021-9991(80)90005-4
[8] Kopriva D A 1989 SIAM J. Sci. Stat. Comput.10 120 · Zbl 0724.65092 · doi:10.1137/0910010
[9] Bonazzola S, Gourgoulhon E, Salgado M and Marck J A 1993 Astron. Astrophys.278 421
[10] Pfeiffer H P 2003 Initial data for black hole evolutions PhD Thesis Ithaca, NY: Cornell University
[11] Ansorg M 2007 Class. Quantum Grav.24 S1 · Zbl 1117.83301 · doi:10.1088/0264-9381/24/12/S01
[12] Spectral Einstein Code (www.black-holes.org/code/SpEC.html)
[13] LORENE (Langage Objet pour la Relativité Numérique) (www.lorene.obspm.fr)
[14] Kidder L E, Scheel M A and Teukolsky S A 2000 Phys. Rev. D 62 084032 · doi:10.1103/PhysRevD.62.084032
[15] Szilágyi B, Lindblom L and Scheel M A 2009 Phys. Rev. D 80 124010 · doi:10.1103/PhysRevD.80.124010
[16] Hemberger D A, Scheel M A, Kidder L E, Szilágyi B, Lovelace G, Taylor N W and Teukolsky S 2013 Class. Quantum Grav.30 115001 · Zbl 1271.83055 · doi:10.1088/0264-9381/30/11/115001
[17] Boyle M et al 2019 The SXS Collaboration catalog of binary black hole simulations Class. Quantum Grav.36 195006 · doi:10.1088/1361-6382/ab34e2
[18] Patera A T 1984 J. Comput. Phys.54 468 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[19] Piran T, Safier P N and Stark R F 1985 Phys. Rev. D 32 3101 · doi:10.1103/PhysRevD.32.3101
[20] Weber J and Wheeler J A 1957 Rev. Mod. Phys.29 509 · Zbl 0078.43204 · doi:10.1103/RevModPhys.29.509
[21] Xanthopoulos B C 1986 Phys. Rev. D 34 3608 · doi:10.1103/PhysRevD.34.3608
[22] Kompaneets A S 1958 Zh. Eksp. Teor. Fiz.34 953
[23] Kompaneets A S 1958 Sov. Phys.—JETP7 659 · Zbl 0083.42905
[24] Jordan P, Ehlers J and Kundt W 1960 Abh. Akad. Wiss. Mainz. Math. Nat.Kl 2
[25] Jordan P, Ehlers J and Kundt W 2009 Gen. Relativ. Gravit.41 2191 · Zbl 1179.83022 · doi:10.1007/s10714-009-0869-8
[26] Thorne K S 1965 Phys. Rev.138 251 · doi:10.1103/PhysRev.138.B251
[27] Stachel J J 1966 J. Math. Phys.7 1321 · Zbl 0184.55105 · doi:10.1063/1.1705036
[28] Gonçalves S M C V 2003 Class. Quantum Grav.20 37 · Zbl 1024.83007 · doi:10.1088/0264-9381/20/1/303
[29] Dubal M R d’Inverno R A and Clarke C J S 1995 Phys. Rev. D 52 6868 · doi:10.1103/PhysRevD.52.6868
[30] Celestino J, de Oliveira H P and Rodrigues E L 2016 Phys. Rev. D 93 104018 · doi:10.1103/PhysRevD.93.104018
[31] Boyd J 2001 Chebyshev and Fourier Spectral Methods (New York: Dover) · Zbl 0994.65128
[32] Sachs R K 1962 Proc. R. Soc. A 265 463 · Zbl 0099.42902 · doi:10.1098/rspa.1962.0036
[33] Sachs R K 1962 Proc. R. Soc. A 270 103 · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[34] Newman E T and Penrose R 1962 J. Math. Phys.3 566 · Zbl 0108.40905 · doi:10.1063/1.1724257
[35] Newman E T and Penrose R 1963 J. Math. Phys.4 998 · doi:10.1063/1.1704025
[36] Einstein A and Rosen N 1937 J. Franklin Inst.223 43 · JFM 63.1259.03 · doi:10.1016/S0016-0032(37)90583-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.