×

An improved thermal model for SPH metal cutting simulations on GPU. (English) Zbl 1481.74130

Summary: This paper presents the first application of a higher-order Smoothed Particle Hydrodynamics (SPH) method to the thermal modeling of metal cutting problems. With this application, the heat transfer equation in the thermo-mechanical simulation of metal cutting is solved more accurately by addressing the consistency issue of standard SPH formulations. Furthermore, through a robust and effective surface-detection algorithm, this work enables the SPH cutting models to include heat loss thermal boundary conditions for the first time. Process forces, tool temperatures, and chip geometry are numerically investigated in machining a Ti6Al4V workpiece at two different cutting speeds. Several validation tests and sensitivity analyses are performed in high resolution, thanks to the runtime acceleration of SPH by parallel computing on Graphics Processing Units (GPUs). The results show that SPH simulations with the proposed thermal modeling approach achieve more realistic serrated chips in titanium cutting problems.

MSC:

74F05 Thermal effects in solid mechanics
74S99 Numerical and other methods in solid mechanics
80A99 Thermodynamics and heat transfer

Software:

CUDA; AMBER; DualSPHysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Marrone, S.; Colagrossi, A.; Le Touzé, D.; Graziani, G., Fast free-surface detection and level-set function definition in SPH solvers, J. Comput. Phys., 229, 10, 3652-3663 (2010) · Zbl 1391.76623
[2] Afrasiabi, M.; Roethlin, M.; Wegener, K., Thermal simulation in multiphase incompressible flows using coupled meshfree and particle level set methods, Comput. Methods Appl. Mech. Eng., 336, 667-694 (2018) · Zbl 1440.76156
[3] Alshaer, A.; Rogers, B.; Li, L., Smoothed particle hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of al and associated free-surface problems, Comput. Mater. Sci., 127, 161-179 (2017)
[4] Afrasiabi, M.; Roethlin, M.; Chatzi, E.; Wegener, K., A robust particle-based solver for modeling heat transfer in multiphase flows, ECCM-ECFD, UK (2018) · Zbl 1440.76156
[5] Limido, J.; Espinosa, C.; Salaün, M.; Lacome, J.-L., SPH method applied to high speed cutting modelling, Int. J. Mech. Sci., 49, 7, 898-908 (2007)
[6] Ruttimann, N.; Buhl, S.; Wegener, K., Simulation of single grain cutting using SPH method, J. Mach. Eng., 10, 3, 17-29 (2010)
[7] Niu, W.; Mo, R.; Liu, G.; Sun, H.; Dong, X.; Wang, G., Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method, Int. J. Adv. Manuf. Technol., 95, 1-4, 905-919 (2018)
[8] Afrasiabi, M.; Roethlin, M.; Klippel, H.; Wegener, K., Meshfree simulation of metal cutting: an updated lagrangian approach with dynamic refinement, Int. J. Mech. Sci., 160C, 451-466 (2019)
[9] Röthlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K., Metal cutting simulations using smoothed particle hydrodynamics on the GPU, Int. J. Adv. Manuf. Technol., 102, 9-12, 3445-3457 (2019)
[10] Roethlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K., Meshless single grain cutting simulations on the GPU, Int J Mechatron. Manuf. Syst., 12, 272-297 (2019)
[11] Violeau, D.; Rogers, B. D., Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future, J. Hydraul. Res., 54, 1, 1-26 (2016)
[12] Shivanian, E., More accurate results for two-dimensional heat equation with neumann’s and non-classical boundary conditions, Eng. Comput., 32, 4, 729-743 (2016)
[13] Afrasiabi, M.; Meier, L.; Klippel, H.; Wegener, K., GPU-accelerated meshfree simulations for parameter identification of a friction model in metal machining, Int. J. Mech. Sci., 176, 105571 (2020)
[14] Bonet, J.; Lok, T.-S., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Eng., 180, 1, 97-115 (1999) · Zbl 0962.76075
[15] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved SPH method: towards higher order convergence, J. Comput. Phys., 225, 2, 1472-1492 (2007) · Zbl 1118.76050
[16] Fatehi, R.; Manzari, M., Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput. Math. Appl., 61, 2, 482-498 (2011) · Zbl 1211.76089
[17] Violeau, D.; Leroy, A., On the maximum time step in weakly compressible SPH, J. Comput. Phys., 256, 388-415 (2014) · Zbl 1349.76745
[18] Afrasiabi, M.; Chatzi, E.; Wegener, K., A particle strength exchange method for metal removal in laser drilling, Procedia CIRP, 72, 1548-1553 (2018)
[19] Number: 2 Publisher: Multidisciplinary Digital Publishing Institute
[20] Brookshaw, L., A method of calculating radiative heat diffusion in particle simulations, Proceedings of the Astronomical Society of Australia, 6, 207-210 (1985)
[21] Choquin, J.; Huberson, S., Particles simulation of viscous flow, Comput. Fluids, 17, 2, 397-410 (1989)
[22] Chen, J.; Beraun, J.; Carney, T., A corrective smoothed particle method for boundary value problems in heat conduction, Int. J. Numer. Methods Eng., 46, 2, 231-252 (1999) · Zbl 0941.65104
[23] Korzilius, S.; Schilders, W.; Anthonissen, M., An improved CSPM approach for accurate second-derivative approximations with SPH, J. Appl. Math. Phys., 5, 01, 168 (2016)
[24] Afrasiabi, M.; Roethlin, M.; Wegener, K., Contemporary meshfree methods for three dimensional heat conduction problems, Arch. Comput. Methods Eng., 27, 5, 1413-1447 (2020)
[25] Shaw, M. C., Metal Cutting Principles, 2 (2005), Oxford University Press New York
[26] Johnson, G. R.; Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, vol. 21, The Netherlands, 541-547 (1983)
[27] Sima, M.; Özel, T., Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V, Int. J. Machine Tools Manuf., 50, 11, 943-960 (2010)
[28] Moufki, A.; Molinari, A.; Dudzinski, D., Modelling of orthogonal cutting with a temperature dependent friction law, J. Mech. Phys. Solids, 46, 10, 2103-2138 (1998) · Zbl 0966.74052
[29] Nianfei, G.; Guangyao, L.; Shuyao, L., 3D adaptive RKPM method for contact problems with elastic-plastic dynamic large deformation, Eng. Anal. Bound. Elem., 33, 10, 1211-1222 (2009) · Zbl 1253.74131
[30] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 8, 1703 (2005) · Zbl 1160.76399
[31] Liu, G.-R.; Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method (2003), World Scientific · Zbl 1046.76001
[32] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 1, 543-574 (1992)
[33] Liu, M.; Liu, G., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[34] Monaghan, J.; Gingold, R., Shock simulation by the particle method SPH, J. Comput. Phys., 52, 2, 374-389 (1983) · Zbl 0572.76059
[35] Gray, J.; Monaghan, J.; Swift, R., SPH elastic dynamics, Comput. Methods Appl. Mech. Eng., 190, 49, 6641-6662 (2001) · Zbl 1021.74050
[36] Monaghan, J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1, 1-15 (1989) · Zbl 0665.76124
[37] Randles, P.; Libersky, L., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Eng., 139, 1, 375-408 (1996) · Zbl 0896.73075
[38] N. Corporation, Nvidia CUDA home page: https://developer.nvidia.com/cuda-zone, 2007.
[39] Liu, W.; Schmidt, B.; Voss, G.; Müller-Wittig, W., Accelerating molecular dynamics simulations using graphics processing units with CUDA, Comput. Phys. Commun., 179, 9, 634-641 (2008)
[40] Salomon-Ferrer, R.; Goetz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald, J. Chem. Theory Comput., 9, 9, 3878-3888 (2013)
[41] M. Röthlin, Meshless software tool to simulate metal cutting operations by employing contemporary numerical methods, 2019.
[42] Accepted: 2020-10-14T06:44:20Z ISBN: 9783907234211
[43] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1988), CRC Press · Zbl 0662.76002
[44] Crespo, A.; Dominguez, J.; Barreiro, A.; Gomez-Gesteira, M.; Rogers, B. D., Dualsphysics, new GPU computing on SPH models, Proc. 6th International SPHERIC Workshop, 348-354 (2011)
[45] Crespo, A. J.; Dominguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; Garcia-Feal, O., Dualsphysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH), Comput. Phys. Commun., 187, 204-216 (2015) · Zbl 1348.76005
[46] Stöcker, H., Taschenbuch der Physik (2004), Harri Deutsch Verlag
[47] Number: 3 Publisher: Multidisciplinary Digital Publishing Institute
[48] Arrazola, P.-J.; Aristimuno, P.; Soler, D.; Childs, T., Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography, CIRP Ann., 64, 1, 57-60 (2015)
[49] Publisher: Elsevier
[50] Huang, D.; Weißenfels, C.; Wriggers, P., Modelling of serrated chip formation processes using the stabilized optimal transportation meshfree method, Int. J. Mech. Sci., 155, 323-333 (2019)
[51] Wyen, C.-F., Rounded Cutting edges and Their Influence in Machining Titanium (2011), ETH-Zürich, Ph.D. thesis
[52] Jawahir, I.; Brinksmeier, E.; M’saoubi, R.; Aspinwall, D.; Outeiro, J.; Meyer, D.; Umbrello, D.; Jayal, A., Surface integrity in material removal processes: recent advances, CIRP Ann., 60, 2, 603-626 (2011)
[53] Childs, T., Adiabatic shearing in metal machining, (Laperrière, L.; Reinhart, G., CIRP Encyclopedia of Production Engineering (2014), Springer: Springer Berlin, Heidelberg), 27-33
[54] Afrasiabi, M.; Lüthi, C.; Bambach, M.; Wegener, K., Multi-resolution SPH simulation of a laser powder bed fusion additive manufacturing process, Appl. Sci., 11, 7, 2962 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.