×

Testing the first-order separability hypothesis for spatio-temporal point patterns. (English) Zbl 07422746

Summary: First-order separability of a spatio-temporal point process plays a fundamental role in the analysis of spatio-temporal point pattern data. While it is often a convenient assumption that simplifies the analysis greatly, existing non-separable structures should be accounted for in the model construction. Three different tests are proposed to investigate this hypothesis as a step of preliminary data analysis. The first two tests are exact or asymptotically exact for Poisson processes. The first test based on permutations and global envelopes allows one to detect at which spatial and temporal locations or lags the data deviate from the null hypothesis. The second test is a simple and computationally cheap \(\chi^2\)-test. The third test is based on stochastic reconstruction method and can be generally applied for non-Poisson processes. The performance of the first two tests is studied in a simulation study for Poisson and non-Poisson models. The third test is applied to the real data of the UK 2001 epidemic foot and mouth disease.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baddeley, A.; Møller, J.; Waagepetersen, R., Non- and semi-parametric estimation of interaction in inhomogeneous point patterns, Stat. Neerl., 54, 329-350 (2000) · Zbl 1018.62027
[2] Baddeley, A.; Rubak, E.; Turner, R., Spatial Point Patterns: Methodology and Applications with R (2016), Chapman and Hal/CRC Press · Zbl 1357.62001
[3] Barnard, G. A., Discussion of professor Bartlett’s paper, J. R. Stat. Soc., Ser. B, 25, 294 (1963)
[4] Beneš, V.; Prokešová, M.; Helisová, K. S.; Zikmundová, M., Space-time models in stochastic geometry, (Schmidt, V., Stochastic Geometry, Spatial Statistics and Random Fields: Models and Algorithms (2015), Springer: Springer Switzerland), 205-232 · Zbl 1366.60021
[5] Besag, J.; Diggle, P. J., Simple Monte Carlo tests for spatial pattern, J. R. Stat. Soc., Ser. C, 26, 327-333 (1977)
[6] Bivand, S. R.; Pebesma, E.; Gómez-Rubio, V., Applied Spatial Data Analysis with R (2013), Springer: Springer New York · Zbl 1269.62045
[7] Blum, J. R.; Kiefer, J.; Rosenblatt, M., Distribution free tests of independence based on the sample distribution function, Ann. Math. Stat., 32, 485-498 (1961) · Zbl 0139.36301
[8] Cronie, O.; Van Lieshout, M. N.M., A J-function for inhomogeneous spatio-temporal point processes, Scand. J. Stat., 42, 562-579 (2015) · Zbl 1364.60063
[9] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure (2008), Springer-Verlag: Springer-Verlag New York · Zbl 1159.60003
[10] Diaz-Avalos, C.; Juan, P.; Mateu, J., Similarity measures of conditional intensity functions to test separability in multidimensional point processes, Stoch. Environ. Res. Risk Assess., 27, 1193-1205 (2013)
[11] Diggle, P., Spatio-temporal point processes: methods and applications, (Finkenstädt, B.; Held, L.; Isham, V., Statistical Methods for Spatio-Temporal Systems (2007), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton), 1-45 · Zbl 1121.62080
[12] Diggle, P. J., A kernel method for smoothing point process data, Appl. Stat., 34, 138-147 (1985) · Zbl 0584.62140
[13] Diggle, P. J., Spatio-temporal point processes, partial likelihood, foot and mouth disease, Stat. Methods Med. Res., 15, 325-336 (2006) · Zbl 1122.62344
[14] Diggle, P. J., Statistical Analysis of Spatial and Spatio-Temporal Point Patterns (2013), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton
[15] Diggle, P. J.; Gabriel, E., Spatio-temporal point processes, (Gelfand, A. E.; Diggle, P. J.; Guttorp, P.; Fuentes, M., Handbook of Spatial Statistics (2010), Chapman and Hal/CRC Press: Chapman and Hal/CRC Press Boca Raton), 451-464
[16] Fuentes-Santos, I.; González-Manteiga, W.; Mateu, J., A first-order, ratio-based nonparametric separability test for spatiotemporal point processes, Environmetrics, 29, 1-18 (2018)
[17] Gabriel, E.; Diggle, P. J., Second-order analysis of inhomogeneous spatio-temporal point process data, Stat. Neerl., 63, 43-51 (2009)
[18] Gabriel, E., Diggle, P.J., Rowlingson, B., Rodriguez-Cortes, F.J., 2018. Stpp: Space-time point pattern simulation, visualisation and analysis. R package version 2.0-3.
[19] Ghorbani, M., Testing the weak stationarity of a spatio-temporal point process, Stoch. Environ. Res. Risk Assess., 27, 517-524 (2013)
[20] Gonzalez, J. A.; Hahn, U.; Mateu, J., Analysis of tornado reports through replicated spatio temporal point patterns, J. R. Stat. Soc., Ser. C, 69, 3-23 (2020)
[21] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), John Wiley and Sons: John Wiley and Sons Chichester · Zbl 1197.62135
[22] Keeling, M.; Woolhouse, M. E.J.; Shaw, D. J.; Matthews, L.; Chase-Topping, M.; Haydon, D. T.; Cornell, S. J.; Kappey, J.; Wilesmith, J.; Grenfell, B. T., Dynamics of the 2001 UK foot-and-mouth epidemic dispersal in a heterogeneous landscape, Science, 294, 813-817 (2001)
[23] Koňasová, K.; Dvořák, J., Stochastic reconstruction for inhomogeneous point patterns, Methodol. Comput. Appl. Probab. (2021) · Zbl 1480.60128
[24] Loosmore, N. B.; Ford, D. E., Statistical inference using the G or K point pattern spatial statistics, Ecol. Soc. Am., 87, 1925-1931 (2006)
[25] Lotwick, H. W.; Silverman, B. W., Methods for analysing spatial point processes of several types of points, J. R. Stat. Soc., Ser. B, 44, 406-413 (1982)
[26] Møller, J.; Christensen, H. S.; Cuevas-Pacheco, F.; Christoffersen, A. D., Structured space-sphere point processes and K-functions, Methodol. Comput. Appl. Probab. (2019)
[27] Møller, J.; Ghorbani, M., Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes, Stat. Neerl., 66, 472-491 (2012)
[28] Møller, J.; Ghorbani, M., Functional summary statistics for the Johnson-Mehl model, J. Stat. Comput. Simul., 85, 899-916 (2015) · Zbl 1457.62288
[29] Møller, J.; Syversveen, A. R.; Waagepetersen, R. P., Log Gaussian Cox processes, Scand. J. Stat., 25, 451-482 (1998) · Zbl 0931.60038
[30] Mrkvička, T.; Dvořák, J.; González, J. A.; Mateu, J., Revisiting the random shift approach for testing in spatial statistics, Spat. Stat., Article 100430 pp. (2020)
[31] Mrkvička, T.; Myllymäki, M.; Jílek, M.; Hahn, U., A one-way ANOVA test for functional data with graphical interpretation, Kybernetika, 56, 432-458 (2020) · Zbl 1474.62199
[32] Mrkvička, T.; Myllymäki, M.; Kuronen, M.; Narisetty, N. N., New methods for multiple testing in permutation inference for the general linear model (2020)
[33] Myllymäki, M.; Mrkvička, T., GET: global envelopes in R (2019)
[34] Myllymäki, M.; Mrkvička, T.; Grabarnik, P.; Seijo, H.; Hahn, U., Global envelope tests for spatial processes, J. R. Stat. Soc., Ser. B, 79, 381-404 (2017) · Zbl 1414.62404
[35] Narisetty, N. N.; Nair, V. J., Extremal depth for functional data and applications, J. Am. Stat. Assoc., 111, 1705-1714 (2016)
[36] R: A Language and Environment for Statistical Computing (2019), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[37] Schlather, M.; Malinowski, A.; Menck, P.; Oesting, M.; Strokorb, K., Analysis, simulation and prediction of multivariate random fields with package Randomfields, J. Stat. Softw., 63, 1-25 (2015)
[38] Schoenberg, F. P., Testing separability in spatial-temporal marked point processes, Biometrics, 60, 471-481 (2004) · Zbl 1274.62386
[39] Schoenberg, F. P.; Brillinger, D. R.; Guttorp, P. M., Point processes, spatial-temporal, (El-Shaarawi, A.; Piegorsch, W., Encyclopedia of Environmetrics, vol. 3 (2002), Wiley: Wiley New York), 1573-1577
[40] Sheather, S. J.; Jones, M. C., A reliable data-based bandwidth selection method for kernel density estimation, J. R. Stat. Soc., Ser. B, 53, 683-690 (1991) · Zbl 0800.62219
[41] Tscheschel, A.; Stoyan, D., Statistical reconstruction of random point patterns, Comput. Stat. Data Anal., 51, 859-871 (2006) · Zbl 1157.62453
[42] Wiegand, T.; He, F.; Hubbell, S., A systematic comparison of summary characteristics for quantifying point patterns in ecology, Ecography, 36, 92-103 (2013)
[43] Wood, A. T.A.; Chan, G., Simulation of stationary Gaussian processes in \([ 0 , 1 ]^d\), J. Comput. Graph. Stat., 3, 409-432 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.