×

Simple and robust element-free Galerkin method with almost interpolating shape functions for finite deformation elasticity. (English) Zbl 1481.74073

Summary: In this paper, we present a meshless method belonging to the family of element-free Galerkin (EFG) methods. The presented meshless method allows accurate enforcement of essential boundary conditions. The method uses total Lagrangian formulation with explicit time integration to facilitate code simplicity and robust computations in applications that involve large deformations and non-linear materials. We use a regularized weight function, which closely approximates the Kronecker delta, to generate interpolating shape functions. The imposition of the prescribed displacements on the boundary becomes as straightforward as in the finite element method (FEM). The effectiveness and accuracy of the proposed method is demonstrated using 3D numerical examples that include cylinder indentation by 70% of its initial height, and indentation of the brain.

MSC:

74B20 Nonlinear elasticity
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Atluri, S. N., The Meshless Method (2002), Tech. Sci. Press, Forsyth · Zbl 1147.74414
[2] Atluri, S. N.; Zhu, T., A new meshless local petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[3] De, S.; Bathe, K. J., The method of finite spheres, Comput. Mech., 25, 329-345 (2000) · Zbl 0952.65091
[4] Lai, B.; Bathe, K.-. J., The method of finite spheres in three-dimensional linear static analysis, Comput. Struct., 173, 161-173 (2016)
[5] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574 (1992)
[6] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256 (1994) · Zbl 0796.73077
[7] Almasi, A.; Beel, A.; Kim, T.-. Y.; Michopoulos John, G.; Song, J.-. H., Strong-form collocation method for solidification and mechanical analysis of polycrystalline materials, J. Eng. Mech., 145, Article 04019082 pp. (2019)
[8] Bourantas, G. C.; Mountris, K. A.; Loukopoulos, V. C.; Lavier, L.; Joldes, G. R.; Wittek, A.; Miller, K., Strong-form approach to elasticity: hybrid finite difference-meshless collocation method (FDMCM), Appl. Math. Model, 57, 316-338 (2018) · Zbl 1480.65353
[9] Wittek, A.; Grosland, N. M.; Joldes, G. R.; Magnotta, V.; Miller, K., From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications, Ann. Biomed. Eng., 44, 3-15 (2016)
[10] Joldes, G.; Bourantas, G.; Zwick, B.; Chowdhury, H.; Wittek, A.; Agrawal, S.; Mountris, K.; Hyde, D.; Warfield, S. K.; Miller, K., Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation, Med. Image Anal., 56, 152-171 (2019)
[11] Jin, X.; Joldes, G. R.; Miller, K.; Yang, K. H.; Wittek, A., Meshless algorithm for soft tissue cutting in surgical simulation, Comput. Methods Biomech. Biomed. Eng., 17, 800-811 (2014)
[12] Wittek, A.; Bourantas, G.; Zwick, B. F.; Joldes, G.; Esteban, L.; Miller, K., Mathematical modeling and computer simulation of needle insertion into soft tissue, PLOS ONE, 15, Article e0242704 pp. (2020)
[13] Miller, K.; Horton, A.; Joldes, G. R.; Wittek, A., Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method, J. Biomech., 45, 2698-2701 (2012)
[14] Wittek, A.; Bourantas, G.; Zwick, B. F.; Joldes, G.; Estaban, L.; Miller, K., Mathematical modeling and computer simulation of needle insertion into soft tissue, PLOS ONE, 2 (2020), e0242704 1-31
[15] Liu, G. R.; Jiang, Y.; Chen, L.; Zhang, G. Y.; Zhang, Y. W., A singular cell-based smoothed radial point interpolation method for fracture problems, Comput. Struct., 89, 1378-1396 (2011)
[16] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87, 14-26 (2009)
[17] Liu, G. R.; Zhang, G. Y.; Dai, K. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A linesarly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int. J. Comput. Methods, 02, 645-665 (2005) · Zbl 1137.74303
[18] Zhang, G. Y.; Liu, G. R.; Wang, Y. Y.; Huang, H. T.; Zhong, Z. H.; Li, G. Y.; Han, X., A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems, Int. J. Numer. Methods Eng., 72, 1524-1543 (2007) · Zbl 1194.74543
[19] Liew, K. M.; Cheng, Y.; Kitipornchai, S., Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, Int. J. Numer. Methods Eng., 65, 1310-1332 (2006) · Zbl 1147.74047
[20] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least-squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[21] Kaljević, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. Numer. Methods Eng., 40, 2953-2974 (1997) · Zbl 0895.73079
[22] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems, Int. J. Appl. Mech., 03, 735-758 (2011)
[23] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 873-880 (2012) · Zbl 1352.65539
[24] Netuzhylov, H., Enforcement of boundary conditions in meshfree methods using interpolating moving least squares, Eng. Anal. Bound. Elem., 32, 512-516 (2008) · Zbl 1244.65190
[25] Wang, J.; Wang, J.; Sun, F.; Cheng, Y., An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems, Int. J. Comput. Methods, 10, Article 1350043 pp. (2013) · Zbl 1359.65282
[26] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Miao, Y.; Chen, E., Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices, Appl. Math. Comput., 325, 120-145 (2018) · Zbl 1429.65042
[27] Wang, Q.; Zhou, W.; Feng, Y. T.; Ma, G.; Cheng, Y.; Chang, X., An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method, Appl. Math. Comput., 353, 347-370 (2019) · Zbl 1428.74221
[28] Joldes, G. R.; Chowdhury, H. A.; Wittek, A.; Doyle, B.; Miller, K., Modified moving least squares with polynomial bases for scattered data approximation, Appl. Math. Comput., 266, 893-902 (2015) · Zbl 1410.65019
[29] Joldes Grand, R.; Teakle, P.; Wittek, A.; Miller, K., Computation of accurate solutions when using element-free Galerkin methods for solving structural problems, Eng. Comput., 34, 902-920 (2017)
[30] Bathe, K.-. J., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall New Jersey
[31] Miller, K.; Joldes, G.; Lance, D.; Wittek, A., Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation, Commun. Numer. Methods Eng., 23, 121-134 (2007) · Zbl 1154.74045
[32] Horton, A.; Wittek, A.; Joldes, G. R.; Miller, K., A meshless total Lagrangian explicit dynamics algorithm for surgical simulation, Int. J. Numer. Method Biomed. Eng., 26, 977-998 (2010) · Zbl 1193.92056
[33] Joldes, G. R.; Wittek, A.; Miller, K., Computation of intra-operative brain shift using dynamic relaxation, Comput. Methods Appl. Mech. Eng., 198, 3313-3320 (2009) · Zbl 1230.74136
[34] Joldes, G. R.; Wittek, A.; Miller, K., An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation, Int. J. Numer. Method Biomed. Eng., 27, 173-185 (2011) · Zbl 1370.65054
[35] Liu, G. R., Mesh Free Methods: Moving Beyond the Finite Element Method (2003), CRC Press: CRC Press Boca Raton · Zbl 1031.74001
[36] Most, T.; Bucher, C., A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions, Struct. Eng. Mech., 21, 3 (2005)
[37] ABAQUS, I., 2014. ABAQUS Online Documentation: Version 6.14.
[38] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach For Engineering (2000), Wiley: Wiley New York · Zbl 0980.74001
[39] Ogden, R. W., Non-linear elastic deformations (1984), Ellis Horwood: Ellis Horwood Chichester, England · Zbl 0541.73044
[40] Miller, K., Method of testing very soft biological tissues in compression, J. Biomech., 38, 153-158 (2005)
[41] Morriss, L.; Wittek, A.; Miller, K., Compression testing of very soft biological tissues using semi-confined configuration—a word of caution, J. Biomech., 41, 235-238 (2008)
[42] FEniCS Project https://fenicsproject.org/, 2020.
[43] Hyperelasticity https://fenicsproject.org/docs/dolfin/latest/python/demos/hyperelasticity/demo_hyperelasticity.py.html, 2020.
[44] Wittek, A.; Joldes, G.; Couton, M.; Warfield, S. K.; Miller, K., Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; application to non-rigid neuroimage registration, Prog. Biophys. Mol. Biol., 103, 292-303 (2010)
[45] Joldes, G. R.; Wittek, A.; Miller, K., Stable time step estimates for mesh-free particle methods, Int. J. Numer. Methods Eng., 91, 450-456 (2012) · Zbl 1253.74130
[46] Joldes, G. R.; Chowdhury, H.; Wittek, A.; Miller, K., A new method for essential boundary conditions imposition in explicit meshless methods, Eng. Anal. Bound. Elem., 80, 94-104 (2017) · Zbl 1403.74112
[47] Joldes, G. R.; Wittek, A.; Miller, K., Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation, Med. Image Anal., 13, 912-919 (2009)
[48] Tang, Z.; Liu, F. J.; Guo, S. H.; Chang, J.; Zhang, J. J., Evaluation of coupled finite element/meshfree method for a robust full-scale crashworthiness simulation of railway vehicles, Adv. Mech. Eng., 8, Article 1687814016642954 pp. (2016)
[49] J.O. Hallquist, LS-DYNA theoretical manual, 2019. https://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf.
[50] Joldes, G. R.; Wittek, A.; Miller, K., Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems, Eng. Anal. Bound. Elem., 51, 52-63 (2015) · Zbl 1403.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.