×

Further results about seeking for the exact solutions of the nonlinear \((2 + 1)\)-dimensional Jaulent-Miodek equation. (English) Zbl 1477.35057

Summary: Nonlinear science is a great revolution of modern natural science. As a result of its rise, the various branches of subjects characterized by nonlinearity have been developed vigorously. In particular, more attention to acquiring the exact solutions of a wide variety of nonlinear equations has been paid by people. In this paper, three methods for solving the exact solutions of the nonlinear \((2 + 1)\)-dimensional Jaulent-Miodek equation are introduced in detail. First of all, the exact solutions of this nonlinear equation are obtained by using the \(\exp(-\phi(z))\)-expansion method, \(\tanh\) method, and sine-cosine method. Secondly, the relevant results are verified and simulated by using Maple software. Finally, the advantages and disadvantages of the above three methods listed in the paper are analyzed, and the conclusion was drawn by us. These methods are straightforward and concise in very easier ways.

MSC:

35C05 Solutions to PDEs in closed form
35C07 Traveling wave solutions
35G25 Initial value problems for nonlinear higher-order PDEs

Software:

MACSYMA; Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Campbell, D. K.; Huang, Y. N., Nonlinear science from sample to practical, Mechanical Progress, 19, 4, 90-100 (1989)
[2] Pinto de Sa, J. L.; Louro, M., On human life risk-assessment and sensitive ground fault protection in MV distribution networks, IEEE Transactions on Power Delivery, 25, 4, 2319-2327 (2010) · doi:10.1109/TPWRD.2010.2053564
[3] Liu, C. S.; Jiao, L. C., Application of nonlinear programming in reactive power compensation optimization of mine high-voltage distribution network, Journal of Coal, 27, 4, 444-448 (2002)
[4] Tian, C. Z.; Wang, L. L.; Yang, Y., Distribution network evaluation method combined with nonlinear mapping and clustering analysis, Journal of Power Systems and Automation, 30, 12, 145-150 (2018)
[5] Lai, D. W.; Wang, Z. X., Some nonlinear micropartial equations appearing in power system, Applied Mathematics, 3, 1, 84-90 (1990) · Zbl 0894.34006
[6] Xiang, G. B., Asymmetric nonlinear oscillation in parallel operation of power stations, ACTA Automatica Sinica, 15, 6, 552-556 (1989) · Zbl 0688.34023
[7] de Marco, C.; Bergen, A. R., A security measure for random load disturbances in nonlinear power system models, IEEE Trans on Circuits and Systems, 34, 12, 1546-1557 (1987) · doi:10.1109/TCS.1987.1086092
[8] Xu, W. B.; Wang, J., Stability analysis of random small disturbances in nonlinear power systems, Power System Technology, 38, 10, 2735-2740 (2014)
[9] Lu, X. H.; Zheng, Y. T., Power system load forecasting model based on nonlinear time series snalysis, Power and Energy, 37, 2, 197-201 (2015)
[10] Song, P. X.; Li, Y. H.; Wang, P., Research on local approximation method of transient stability region boundary of power system, Journal of Electrical Engineering and Control, 20, 5, 7-13 (2016)
[11] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-deVries equation, Physical Review Letters, 19, 19, 1095-1097 (1967) · Zbl 1061.35520 · doi:10.1103/PhysRevLett.19.1095
[12] Wang, M. L.; Li, Z. B., The principle of homogeneous balance and its application, Journal of LanZhou University, 35, 3, 8-16 (1999) · Zbl 0974.35104
[13] Yu, J. P.; Sun, Y. L., Lump solutions to dimensionally reduced Kadomtsev-Petviashvili-like equations, Nonlinear Dynamics, 87, 2, article 3122, 1405-1412 (2017) · doi:10.1007/s11071-016-3122-5
[14] Yu, J. P.; Sun, Y. L., A direct Bäcklund transformation for a \(\left( 3 + 1\right)\)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Nonlinear Dynamics, 90, 4, 2263-2268 (2017) · Zbl 1393.37087 · doi:10.1007/s11071-017-3799-0
[15] Matinfar, M.; Hosseini, K., Optical solitons of (2 + 1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects, Optik-International Journal for Light and Electron Optics, 228, 23, article 166110 (2021) · doi:10.1016/j.ijleo.2020.166110
[16] Akinyemi, L.; Hosseini, K.; Salahshour, S., The bright and singular solitons of (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersions, Optik-International Journal for Light and Electron Optics, 242, 7, article 167120 (2021) · doi:10.1016/j.ijleo.2021.167120
[17] Wang, M. L.; Wang, Y. M.; Zhou, Y. B., An auto-Backlund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications, Physics Letters A, 303, 1, 45-51 (2002) · Zbl 0999.35082 · doi:10.1016/S0375-9601(02)00975-1
[18] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and macsyma, Journal of Physics A: Mathematical and General, 23, 21, 4805-4822 (1990) · Zbl 0719.35085 · doi:10.1088/0305-4470/23/21/021
[19] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, Journal of Mathematical Physics, 24, 3, 522-526 (1983) · Zbl 0514.35083 · doi:10.1063/1.525721
[20] Zhang, D. G., Integrability of fermionic extensions of the Burgers equation, Physics Letters A, 223, 6, 436-438 (1996) · Zbl 1037.37506 · doi:10.1016/S0375-9601(96)00773-6
[21] Liu, C. S., Trial equation method to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications, Communications in Theoretical Physics, 45, 2, 219-223 (2006) · doi:10.1088/0253-6102/45/2/005
[22] Ren, B.; Ma, W. X.; Yu, J., Characteristics and interactions of solitary and lump waves of a \((2+1)\)-dimensional coupled nonlinear partial differential equation, Nonlinear Dynamics, 96, 1, 717-727 (2019) · Zbl 1437.37095 · doi:10.1007/s11071-019-04816-x
[23] Ren, B.; Lin, J.; Lou, Z. M., Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation, Applied Mathematics Letters, 105, article 106326, 105 (2020) · Zbl 1436.35070 · doi:10.1016/j.aml.2020.106326
[24] Satsuma, J., Hirota bilinear method for nonlinear evolution equations, Direct and Inverse Methods in Nonlinear Evolution Equations, 632, 171-222 (2003) · Zbl 1054.35085 · doi:10.1007/978-3-540-39808-0_4
[25] Zuo, J. M.; Zhang, Y. M., The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation, Chinese Physics B, 20, 1, 010205-010279 (2011) · doi:10.1088/1674-1056/20/1/010205
[26] Jaulent, M.; Miodek, I., Nonlinear evolution equations associated with ‘enegry-dependent Schrodinger potentials’, Letters in Mathematical Physics, 1, 3, 243-250 (1976) · Zbl 0342.35012 · doi:10.1007/BF00417611
[27] Feng, D. H.; Li, J. B., Traveling wave solution branch of Jaulent-Miodek equation, Applied Mathematics and Mechanics, 28, 8, 894-900 (2007)
[28] Wazwaz, A. M., Multiple kink solutions and multiple singular kink solutions for \(\left( 2 + 1\right)\)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy, Physics Letters A, 373, 21, 1844-1846 (2009) · Zbl 1229.37100 · doi:10.1016/j.physleta.2009.03.049
[29] Cai, H. C.; Qin, Z. Y.; Deng, A. P., Symmetry transformation and new exact multiple kink and singular kink solutions for \(\left( 2 + 1\right)\)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy, Communications in Theoretical Physics, 59, 2, 141-145 (2013) · Zbl 1264.37025
[30] Ma, H. C.; Deng, A. P.; Yu, Y. D., Lie symmetry group of \(\left( 2 + 1\right)\)-dimensional Jaulent-Miodek equation, Thermal Science, 18, 5, 1547-1552 (2014) · doi:10.2298/TSCI1405547M
[31] Matinfar, M.; Eslami, M.; Roshandel, S., The first integral method to study the \(\left( 2 + 1\right)\)-dimensional Jaulent-Miodek equations, Pramana, 85, 4, 593-603 (2015) · doi:10.1007/s12043-014-0916-1
[32] Li, Y.; Liu, X. Q.; Xin, X. P., Explicit solutions and conservation laws of the extended \(\left( 2 + 1\right)\)-dimensional Jaulent-Miodek equation, Journal of Hebei Normal University, 40, 5, 376-384 (2016) · Zbl 1374.35352
[33] Wei, F. Q.; Zhu, S. H.; Wang, X. J., Kink soliton solutions of the \(\left( 2 + 1\right)\)-dimensional Jaulent-Miodek equation, Journal of China West Normal University, 38, 42, 392-397 (2017)
[34] Motsepa, T.; Abudiab, M.; Masood Khalique, C., A study of an extended generalized \(\left( 2 + 1\right)\)-dimensional Jaulent-Miodek equation, International Journal of Nonlinear Sciences and Numerical Simulation, 19, 3-4, 391-395 (2018) · Zbl 1401.35011 · doi:10.1515/ijnsns-2017-0147
[35] Gu, Y. Y.; Deng, B. M.; Lin, J. M., Exact traveling wave solutions to the (2 + 1)-dimensional Jaulent-Miodek equation, Advances in Mathematical Physics, 2018, 43 (2018) · Zbl 1404.35084 · doi:10.1155/2018/5971646
[36] Shehata, M. S. M.; Zahran, E. H. M., The solitary wave solutions of important model in particle physics and engineering according to two different techniques, American Journal of Computational Mathematics, 9, 9, 317-327 (2019) · doi:10.4236/ajcm.2019.94023
[37] Kaewta, S.; Sirisubtawee, S.; Khansai, N., Explicit exact solutions of the (2+1)-dimensional integro-differential Jaulent-Miodek evolution equation using the reliable methods, International Journal of Mathematics and Mathematical Sciences, 2020, 2 (2020) · Zbl 1486.45017 · doi:10.1155/2020/2916395
[38] Geng, X.; Cao, C.; Dai, H. H., Quasi-periodic solutions for some \(\left( 2 + 1\right)\)-dimensional integrable models generated by the Jaulent-Miodek hierarchy, Mathematical and General, 34, 5, 989-1004 (2001) · Zbl 0978.37054 · doi:10.1088/0305-4470/34/5/305
[39] Zhang, Y. Y.; Liu, X. Q.; Wang, G. W., Symmetry reductions and exact solutions of the \((2+1)\)-dimensional Jaulent-Miodek equation, Applied Mathematic and Computation, 219, 3, 911-916 (2012) · Zbl 1291.35324 · doi:10.1016/j.amc.2012.06.069
[40] Malfliet, W.; Hereman, W., The tanh method: II. Perturbation technique for conservative systems, Physica Scripta, 54, 6, 569-575 (1996) · Zbl 0942.35035 · doi:10.1088/0031-8949/54/6/004
[41] Wazwaz, A. M., Compact and noncompact physical structures for the ZK-BBM equation, Applied Mathematics and Computation, 169, 1, 713-725 (2005) · Zbl 1078.35527 · doi:10.1016/j.amc.2004.09.062
[42] Alquran, M. T., Solitons and periodic solutions to nonlinear partial differential equations by the sine-cosine method, Applied Mathematics and Information Sciences, 6, 1, 85-88 (2012) · Zbl 1329.35101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.