×

Linear first order Riemann-Liouville fractional differential and perturbed Abel’s integral equations. (English) Zbl 1490.34007

J. Differ. Equations 306, 28-59 (2022); corrigendum ibid. 345, 519-520 (2023).
The paper is concerned with linear first order Riemann-Liouville fractional differential equations which generalise several established classes of fractional differential equation. The fractional differential equations are shown to be equivalent to perturbed Abel integral equations. This is followed by two sections where the different forms of the problems are analysed: first the solutions of the Riemann-Liouville fractional differential equations and then the perturbed Abel integral equations.
The key conclusions of the paper include:
nonconstant equilibria exist for some first order Caputo fractional equations
a mean value theorem is provided for fractional derivatives

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
45D05 Volterra integral equations

Software:

DFOC; sysdfod
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Bassam, M. A., Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 218, 1, 70-78 (1965) · Zbl 0156.30804
[2] Almuthaybiri, S. S.; Tisdell, C. C., Global existence theory for fractional differential equations: new advances via continuation methods for contractive maps, Analysis, 39, 4, 117-128 (2019) · Zbl 1436.34003
[3] Bachar, I.; Maagle, H.; Radulescu, V. D., Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems, Electron. J. Differ. Equ., 240, 1-16 (2017) · Zbl 1372.34008
[4] Bai, Z.; Lu, H., Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl., 311, 459-505 (2005) · Zbl 1079.34048
[5] Becker, L. C.; Burton, T. A.; Purnaras, I. K., Integral and fractional equations, positive solutions, and Schaefer’s fixed point theorem, Opusc. Math., 36, 431-458 (2016) · Zbl 1342.34010
[6] Blank, L., Numerical treatment of differential equations of fractional order (1996), Manchester Centre for Computational Mathematics, Numerical Analysis Report 287
[7] Caputo, M., Linear models of dissipation whose Q is almost frequency independent. II, Geophys. J. R. Astron. Soc.. Geophys. J. R. Astron. Soc., Fract. Calc. Appl. Anal., 11, 1, 4-14 (2008), Reprinted from · Zbl 1210.65130
[8] Caputo, M.; Mainardi, F., Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1, 161-198 (1971)
[9] Cen, Z.; Huang, J.; Xu, A.; Le, A., A modified integral discretization scheme for a two-point boundary value problem with a Caputo fractional derivative, J. Comput. Appl. Math., 367, Article 112465 pp. (2020) · Zbl 1425.65074
[10] Cong, N. D.; Tuan, H. T.; Trinh, H., On asymptotic properties of solutions to fractional differential equations, J. Math. Anal. Appl., 484, Article 123759 pp. (2020) · Zbl 1439.34010
[11] Davis, P. J., Leonhard Euler’s integral: a historical profile of the gamma function, Am. Math. Mon., 66, 10, 849-869 (1959) · Zbl 0091.00506
[12] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, 609-625 (1996) · Zbl 0881.34005
[13] Deng, J.; Deng, Z., Existence of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 32, 6-12 (2014) · Zbl 1315.34011
[14] Deng, J.; Ma, L., Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 23, 676-680 (2010) · Zbl 1201.34008
[15] Diethelm, K., The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004 (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1215.34001
[16] Diethelm, K., The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus, J. Fract. Calc. Appl., 15, 2, 304-313 (2012) · Zbl 1284.34010
[17] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[18] Edmunds, D. E.; Evans, W. D., Spectral Theory and Differential Operators, Oxford Mathematical Monographs (2018), Oxford University Press: Oxford University Press Oxford · Zbl 0664.47014
[19] Eloe, P. W.; Masthay, T., Initial value problems for Caputo fractional differential equations, J. Fract. Calc. Appl., 9, 178-195 (2018) · Zbl 1499.34044
[20] El-Shahed, M., Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., Article 10368 pp. (2007) · Zbl 1149.26012
[21] Fatmawati, F.; Khan, M. A.; Bonyah, E.; Hammouch, Z.; Shaiful, E. M., A mathematical model of tuberculosis (TB) transmission with children and adults groups: a fractional model, AIMS Math., 5, 4, 2813-2842 (2020) · Zbl 1484.92108
[22] Gelfand, I. M.; Vilenkin, K., Generalized Functions, vol. 1 (1964), Academic Press: Academic Press New York · Zbl 0136.11201
[23] Goodrich, C. S., Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23, 1050-1055 (2010) · Zbl 1204.34007
[24] Gorenflo, R.; Mainardi, F., Fractional oscillations and Mittag-Leffler functions, (Proceedings of the International Workshop on the Recent Advances in Applied Mathematics (RAAM’96). Proceedings of the International Workshop on the Recent Advances in Applied Mathematics (RAAM’96), Kuwait, 1996 (1996), Kuwait University, Department of Mathematics and Computer Science), 193-208 · Zbl 0916.34011
[25] Gorenflo, R.; Rutman, R., On ultraslow and intermediate processes, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions. Transform Methods and Special Functions, Sofia 1994 (1995), Science Culture Technology: Science Culture Technology Singapore), 61-81 · Zbl 0923.34005
[26] Gorenflo, R.; Vessella, S., Abel Integral Equations: Analysis and Applications (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0717.45002
[27] Hardy, G. H.; Littlewood, J. E., Some properties of fractional integrals. I, Math. Z., 27, 4, 565-606 (1928) · JFM 54.0275.05
[28] Hatcher, J. R., A nonlinear boundary problem, Proc. Am. Math. Soc., 95, 3, 441-448 (1985) · Zbl 0591.30038
[29] Henderson, J.; Luca, R., Existence of positive solutions for a system of semipositone fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ., 22, Article 1 pp. (2016) · Zbl 1363.34007
[30] Hughes, R. J., Semigroups of unbounded linear operators in Banach space, Trans. Am. Math. Soc., 230, 113-145 (1977) · Zbl 0359.47020
[31] Kilbas, A. A.; Bonilla, B.; Trujillo, J. J., Existence and uniqueness theorems for nonlinear fractional differential equations, Demonstr. Math., 33, 3, 583-602 (2000) · Zbl 0964.34004
[32] Khan, M. A.; Ismail, M.; Ullah, Saif; Farhan, M., Fractional order SIR model with generalized incidence rate, AIMS Math., 5, 3, 1856-1880 (2020) · Zbl 1484.92117
[33] Khan, M. A.; Ullah, Sajjad; Ullah, Saif; Farhan, M., Fractional order SEIR model with generalized incidence rate, AIMS Math., 5, 4, 2843-2857 (2020) · Zbl 1484.92118
[34] Kilbas, A. A.; Marzan, S. A., Cauchy problem for differential equation with Caputo derivative, Fract. Calc. Appl. Anal., 7, 3, 297-321 (2004) · Zbl 1114.34005
[35] Kilbas, A. A.; Marzan, S. A., Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differ. Equ., 41, 1, 84-89 (2005) · Zbl 1160.34301
[36] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[37] Kosmatov, N., Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal., 70, 2521-2529 (2000) · Zbl 1169.34302
[38] Lan, K. Q., Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations, Proc. Am. Math. Soc., 148, 12, 5225-5234 (2020) · Zbl 1455.34007
[39] Lan, K. Q.; Lin, W., Positive solutions of systems of Caputo fractional differential equations, Commun. Appl. Anal., 17, 1, 61-86 (2013) · Zbl 1298.34014
[40] Lan, K. Q.; Lin, W., Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations, J. Lond. Math. Soc., 83, 2, 449-469 (2011) · Zbl 1215.45004
[41] Li, H.; Zhang, L.; Hu, C.; Jiang, Y.; Teng, Z., Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54, 435-449 (2017) · Zbl 1377.34062
[42] Liang, S.; Zhang, J., Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71, 5545-5550 (2009) · Zbl 1185.26011
[43] Lonseth, A. T., Sources and applications of integral equations, SIAM Rev., 19, 2, 241-278 (1977) · Zbl 0363.45001
[44] Odibat, Z. M.; Shawagfeh, N. T., Generalized Taylor’s formula, Appl. Math. Comput., 186, 286-293 (2007) · Zbl 1122.26006
[45] Özalp, N.; Demirci, E., A fractional order SEIR model with vertical transmission, Math. Comput. Model., 54, 1-6 (2011) · Zbl 1225.34011
[46] Petras, I., Fractional-Order Nonlinear Systems: Modeling Analysis and Simulation (2011), Higher Education Press: Higher Education Press Beijing · Zbl 1228.34002
[47] Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198 (1999), Academic Press, Inc.: Academic Press, Inc. San Diego, CA · Zbl 0924.34008
[48] Richardson, L. F., Measure and Integration: A Concise Introduction to Real Analysis (2009), Wiley: Wiley New York · Zbl 1182.28003
[49] Rudin, W., Real and Complex Analysis (1987), McGraw-Hill · Zbl 0925.00005
[50] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
[51] Tamarkin, J. D., On integrable solutions of Abel’s integral equation, Ann. Math., 31, 219-229 (1930) · JFM 56.0347.02
[52] Tonelli, L., Su un problema di Abel, Math. Ann., 99, 183-199 (1928) · JFM 54.0419.04
[53] Tricomi, F. G., Integral Equations (1957), Interscience: Interscience New York · Zbl 0078.09404
[54] Webb, J. R.L., Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471, 692-711 (2019) · Zbl 1404.26022
[55] Webb, J. R.L., Initial value problems for Caputo fractional equations with singular nonlinearities, Electron. J. Differ. Equ., 117, 1-32 (2019) · Zbl 1425.34029
[56] Xu, X.; Jiang, D.; Yuan, C., Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal., 71, 4676-4688 (2009) · Zbl 1178.34006
[57] Zhai, C.; Yan, W.; Yang, C., A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 18, 858-866 (2013) · Zbl 1261.35151
[58] Zhang, S., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59, 1300-1309 (2010) · Zbl 1189.34050
[59] Zhang, X.; Feng, H., Existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential systems, Res. Appl. Math., 1, Article 101261 pp. (2017)
[60] Zhang, X.; Feng, H., Positive solutions for a singular semipositone boundary value problem of nonlinear fractional differential equations, J. Comput. Anal. Appl., 26, 2, 1-10 (2019)
[61] Zhao, Y.; Sun, S.; Han, Z.; Li, Q., Positive solutions to boundary value problems of nonlinear fractional differential equations, Abstr. Appl. Anal., Article 390543 pp. (2011) · Zbl 1210.34009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.