×

Data-driven and distribution-free estimation of tailed-related risks for GARCH models using composite asymmetric least squares regression. (English) Zbl 1479.62079

Summary: In this paper, we propose a two-step procedure to estimate tail-related risks like VaR and ES for the GARCH model. We inventively put forward the composite asymmetric least squares (CALS) regression to estimate the volatility structure and distinguish it from the innovation process in the GARCH model. Then noting that expectile bridges the gap between VaR and ES, we introduce the empirical likelihood method to determine these relations. Accordingly, a new optimization algorithm is proposed. Compared with the existing grid-search method, this new proposed method is data-driven and distribution-free, and shares better estimation accuracy and computational efficiency. Monte Carlo simulation studies and empirical analysis also indicate that our proposed method is superior to some alternative existing tail-related risk estimation methods.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
65C05 Monte Carlo methods

Software:

CAViaR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Taylor, S. J., (Modelling Financial Time Series (1986), World Scientific) · Zbl 1130.91345
[2] Berkes, I.; Horváth, L.; Kokoszka, P., GARCH processes: sturcture and estimation, Bernoulli, 9, 2, 201-227 (2003) · Zbl 1064.62094
[3] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 3, 307-327 (1986) · Zbl 0616.62119
[4] Duffie, D.; Pan, J., An overview of value at risk, J. Derivatives, 4, 3, 7-49 (1997)
[5] Xiao, Z.; Koenker, R., Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models, J. Amer. Statist. Assoc., 104, 488, 1696-1712 (2009) · Zbl 1205.62136
[6] Jorion, P., Value at Risk: A New Benchmark for Measuring Derivatives Risk (1996), Irwin Professional Pub.
[7] Acerbi, C.; Tasche, D., On the coherence of expected shortfall, J. Bank. Financ., 26, 7, 1487-1503 (2002)
[8] Engle, R. F.; Manganelli, S., CAViaR: Conditional autoregressive value at risk by regression quantiles, J. Bus. Econom. Statist., 22, 4, 367-381 (2004)
[9] Ziegel, J. F., Coherence and elicitability, Math. Finance, 26, 4, 901-918 (2016) · Zbl 1390.91336
[10] Bassett Jr., G. W.; Koenker, R.; Kordas, G., Pessimistic portfolio allocation and choquet expected utility, J. Financ. Econom., 2, 4, 477-492 (2004)
[11] Komunjer, I., Asymmetric power distribution: Theory and applications to risk measurement, J. Appl. Econometrics, 22, 5, 891-921 (2007)
[12] Hill, J. B.; Prokhorov, A., GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference, J. Econometrics, 190, 1, 18-45 (2016) · Zbl 1419.62231
[13] Taylor, J. W., Estimating value at risk and expected shortfall using expectiles, J. Financ. Econom., 6, 2, 231-252 (2008)
[14] Newey, W. K.; Powell, J. L., Asymmetric least squares estimation and testing, Econometrica, 55, 4, 819-847 (1987) · Zbl 0625.62047
[15] Efron, B., Regression percentiles using asymmetric squared error loss, Statist. Sinica, 9, 3-125 (1991) · Zbl 0822.62054
[16] Jones, M. C., Expectiles and M-quantiles are quantiles, Statist. Probab. Lett., 20, 2, 149-153 (1994) · Zbl 0801.62012
[17] Kim, M.; Lee, S., Nonlinear expectile regression with application to value-at-risk and expected shortfall estimation, Comput. Statist. Data Anal., 94, 1-19 (2016) · Zbl 1468.62101
[18] Kuan, C. M.; Yeh, J. H.; Hsu, Y. C., Assessing value at risk with care, the conditional autoregressive expectile models, J. Econometrics, 150, 2, 261-270 (2009) · Zbl 1429.62474
[19] Qin, J.; Lawless, J., Empirical likelihood and general estimating equations, Ann. Statist., 30, 0-325 (1994) · Zbl 0799.62049
[20] Owen, A. B., Empirical Likelihood (2001), CRC Press · Zbl 0989.62019
[21] Molanes Lopez, E. M.; Keilegom, I. V.; Veraverbeke, N., Empirical likelihood for non-smooth criterion functions, Scand. J. Stat., 36, 3, 413-432 (2009) · Zbl 1194.62069
[22] Kai, B.; Li, R.; Zou, H., Local composite quantile regression smoothing: An efficient and safe alternative to local polynomial regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 1, 49-69 (2010) · Zbl 1411.62101
[23] Koenker, R.; Xiao, Z., Quantile autoregression, J. Amer. Statist. Assoc., 101, 475, 980-990 (2006) · Zbl 1120.62326
[24] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, Vol. 16 (1995), Siam · Zbl 0832.65046
[25] Waltrup, L. S.; Sobotka, F.; Kneib, T.; Kauermann, G., Expectile and quantile regressionłDavid and Goliath?, Stat. Model., 15, 5, 433-456 (2015) · Zbl 07258997
[26] Prokhorov, A.; Schmidt, P., GMM redundancy results for general missing data problems, J. Econometrics, 151, 1, 47-55 (2009) · Zbl 1431.62661
[27] Kupiec, P., Techniques for verifying the accuracy of risk measurement models, J. Derivatives, 3, 2 (1995)
[28] McNeil, A. J.; Frey, R., Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, J. Empir. Financ., 7, 3-4, 271-300 (2000)
[29] Nolde, N.; Ziegel, J. F., Elicitability and backtesting: Perspectives for banking regulation, Ann. Appl. Stat., 11, 4, 1833-1874 (2017) · Zbl 1383.62247
[30] Zhao, J.; Yan, G.; Zhang, Y., Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity, Statist. Papers, 1-28 (2021) · Zbl 07504782
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.