×

Regularized integrals on Riemann surfaces and modular forms. (English) Zbl 1481.30027

Summary: We introduce a simple procedure to integrate differential forms with arbitrary holomorphic poles on Riemann surfaces. It gives rise to an intrinsic regularization of such singular integrals in terms of the underlying conformal geometry. Applied to products of Riemann surfaces, this regularization scheme establishes an analytic theory for integrals over configuration spaces, including Feynman graph integrals arising from two dimensional chiral quantum field theories. Specializing to elliptic curves, we show such regularized graph integrals are almost-holomorphic modular forms that geometrically provide modular completions of the corresponding ordered \(A\)-cycle integrals.

MSC:

30F30 Differentials on Riemann surfaces
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnold, VI, The cohomology ring of the colored braid group, Math. Notes Acad. Ences Ussr, 5, 2, 138-140 (1969) · Zbl 0277.55002
[2] Axelrod, S.; Singer, IM, Chern-Simons Perturbation Theory II, J. Differ. Geom., 39, hep-th/9304087, 173-213 (1993) · Zbl 0827.53057
[3] Böhm, J., Bringmann, K., Buchholz, A., Markwig, H.: Tropical mirror symmetry for elliptic curves. J. für die Reine Angew. Math. (Crelles Journal) 732, 211-246 (2017). Erratum to Tropical mirror symmetry for elliptic curves (J. reine angew. Math. 732 (2017), 211-246), Journal für die reine und angewandte Mathematik (Crelles Journal), 760 (2020), 163-164 · Zbl 1431.14049
[4] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311-428 (1994) · Zbl 0815.53082 · doi:10.1007/BF02099774
[5] Brown, F.; Dupont, C., Single-valued integration and double copy, J. für die Reine Angew. Math. (Crelles Journal), 775, 145-196 (2021) · Zbl 1484.14043 · doi:10.1515/crelle-2020-0042
[6] Bloch, S.; Esnault, H.; Kreimer, D., On motives associated to graph polynomials, Commun. Math. Phys., 267, 1, 181-225 (2006) · Zbl 1109.81059 · doi:10.1007/s00220-006-0040-2
[7] Bloch, S.; Kreimer, D., Mixed hodge structures and renormalization in physics, Commun. Number Theory Phys., 2, 4, 637-718 (2008) · Zbl 1214.81095 · doi:10.4310/CNTP.2008.v2.n4.a1
[8] Bloch, S., Motives associated to graphs, Jpn. J. Math., 2, 1, 165-196 (2007) · Zbl 1161.11021 · doi:10.1007/s11537-007-0648-9
[9] Bloch, S.: Motives associated to sums of graphs. In: The Geometry of Algebraic Cycles-Proceedings of the Conference on Algebraic Cycles, Columbus, Ohio, 2008. Clay Mathematics Proceedings, vol. 9, pp. 137-143 (2010) · Zbl 1207.81087
[10] Bloch, S.: Feynman Amplitudes in Mathematics and Physics. arXiv:1509.00361 [math.AG] · Zbl 1448.81325
[11] Bloch, S.; Okounkov, A., The character of the infinite wedge representation, Adv. Math., 149, 1-60 (2000) · Zbl 0978.17016 · doi:10.1006/aima.1999.1845
[12] Benini, M., Schenkel, A., Vicedo, B.: Homotopical analysis of 4d Chern-Simons theory and integrable field theories. arXiv:2008.01829 [hep-th]
[13] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem i: the Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys., 210, 1, 249-273 (2000) · Zbl 1032.81026 · doi:10.1007/s002200050779
[14] Costello, K.J.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, vol. 170. American Mathematical Society (2011) · Zbl 1221.81004
[15] Costello, K.J., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv:1201.4501 [math.QA]
[16] Chen, D.; Möller, M.; Sauvaget, A.; Zagier, D., Masur-Veech volumes and intersection theory on moduli spaces of abelian differentials, Invent. Math., 222, 283 (2020) · Zbl 1446.14015 · doi:10.1007/s00222-020-00969-4
[17] Chen, D.; Möller, M.; Zagier, D., Quasimodularity and large genus limits of Siegel-Veech constants, J. Am. Math. Soc., 31, 4, 1059-1163 (2018) · Zbl 1404.32025 · doi:10.1090/jams/900
[18] Demailly, J.P.: Complex analytic and differential geometry (2007)
[19] Dijkgraaf, R.: Mirror symmetry and elliptic curves. The moduli space of curves (Texel Island,: Progr. Math., vol. 129. Birkhäuser Boston, Boston, MA 1995, 149-163 (1994) · Zbl 0913.14007
[20] Dijkgraaf, R., Chiral deformations of conformal field theories, Nuclear Phys. B, 493, 3, 588-612 (1997) · Zbl 0934.81052 · doi:10.1016/S0550-3213(97)00153-3
[21] Douglas, M.; Baulieu, L.; Dotsenko, V.; Kazakov, V.; Windey, P., Conformal Field Theory Techniques in Large N Yang-Mills Theory, Quantum Field Theory and String Theory (1995), Boston, MA: Springer, Boston, MA · Zbl 0846.53062 · doi:10.1007/978-1-4615-1819-8_10
[22] Dabholkar, A., Murthy, S., Zagier, D.: Quantum Black Holes, Wall Crossing, and Mock Modular Forms. arXiv:1208.4074 [hep-th]
[23] Eskin, A.; Okounkov, A., Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., 145, 1, 59-103 (2001) · Zbl 1019.32014 · doi:10.1007/s002220100142
[24] Eicher, M.; Zagier, D., The Theory of Jacobi Forms (1985), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 0554.10018 · doi:10.1007/978-1-4684-9162-3
[25] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley (2014) · Zbl 0408.14001
[26] Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. arXiv:hep-th/9403055
[27] Goujard, E.; Möller, M., Counting Feynman-like graphs: quasimodularity and Siegel-Veech weight, J. Eur. Math. Soc., 22, 2, 365-412 (2020) · Zbl 1433.05155 · doi:10.4171/JEMS/924
[28] Katz, NM, p-adic interpolation of real analytic Eisenstein series, Ann. Math., 104, 459-571 (1976) · Zbl 0354.14007 · doi:10.2307/1970966
[29] Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European Congress of Mathematics Paris, vol. 1994. Springer, pp. 97-121 (1992) · Zbl 0872.57001
[30] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 3, 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[31] Kreimer, D.: Chen’s Iterated Integral represents the Operator Product Expansion. Adv. Theor. Math. Phys. 3, 627-670 (2000) · Zbl 0971.81093
[32] Kaneko, M., Zagier, D., A generalized Jacobi theta function and quasimodular forms. The moduli space of curves (Texel Island,: Progr. Math., vol. 129. Birkhäuser Boston, Boston, MA 1995, 165-172 (1994) · Zbl 0892.11015
[33] Lang, S., Complex Analysis, Graduate Texts in Mathematics (1985), New York, NY: Springer, New York, NY · Zbl 0562.30001
[34] Leray, J., Le calcul differentiel et integral sur une variete analytique complexe (Probleme de Cauchy, III), Bull. Soc. Math. France, 87, 81-180 (1959) · Zbl 0199.41203 · doi:10.24033/bsmf.1515
[35] Li, S., Feynman graph integrals and almost modular forms, Commun. Number Theory Phys., 6, 129-157 (2012) · Zbl 1270.81142 · doi:10.4310/CNTP.2012.v6.n1.a3
[36] Li, S.: Vertex algebras and quantum master equation. arXiv:1612.01292 [math.QA]
[37] Libgober, A.: Elliptic genera, real algebraic varieties and quasi-Jacobi forms. arXiv:0904.1026 [math.AG] · Zbl 1258.14040
[38] Marcolli, M., Feynman integrals and motives, Eur. Congr. Math., 313, 1, 293-332 (2009) · Zbl 1192.81241
[39] Oberdieck, G.; Pixton, A., Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math., 213, 507-587 (2018) · Zbl 1402.14048 · doi:10.1007/s00222-018-0794-0
[40] Rudd, R.: The string partition function for QCD on the torus. arXiv:hep-th/9407176
[41] Roth, M., Yui, N.: Mirror symmetry for elliptic curves: the B-model (bosonic) counting. preprint · Zbl 1226.14067
[42] Roth, M.; Yui, N., Mirror symmetry for elliptic curves: the A-model (fermionic) counting, Clay Math. Proc, 12, 245-283 (2010) · Zbl 1226.14067
[43] Silverman, JH, The Arithmetic of Elliptic Curves (2009), New York, NY: Springer, New York, NY · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
[44] Solomon, L., On the Poincaré-Birkhoff-Witt theorem, J. Comb. Theory, 4, 6, 363-375 (1968) · Zbl 0174.06601 · doi:10.1016/S0021-9800(68)80062-6
[45] Takhtajan, LA, Free Bosons and Tau-functions for compact Riemann surfaces and closed smooth Jordan curves, Curr. Correl. Funct. Lett. Math. Phys., 56, 181-228 (2001) · Zbl 1072.14521 · doi:10.1023/A:1017999407650
[46] Tyurin, A., On periods of quadratic differentials, Russian Math. Surv., 33, 169-221 (1978) · Zbl 0429.30037 · doi:10.1070/RM1978v033n06ABEH003882
[47] Zagier, D., Periods of modular forms and Jacobi theta functions, Invent. Math., 104, 1, 449-465 (1991) · Zbl 0742.11029 · doi:10.1007/BF01245085
[48] Zagier, D., Elliptic Modular Forms and their Applications, 1-103 (2008), Berlin: Springer, Berlin · Zbl 1259.11042
[49] Zagier, D., Partitions, quasimodular forms, and the Bloch-Okounkov theorem, Ramanujan J., 41, 1-3, 345-368 (2016) · Zbl 1352.05021 · doi:10.1007/s11139-015-9730-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.