×

Quorum-sensing induced transitions between bistable steady-states for a cell-bulk ODE-PDE model with lux intracellular kinetics. (English) Zbl 1483.35289

Summary: Intercellular signaling and communication are used by bacteria to regulate a variety of behaviors. In a type of cell-cell communication known as quorum sensing (QS), which is mediated by a diffusible signaling molecule called an autoinducer, bacteria can undergo sudden changes in their behavior at a colony-wide level when the density of cells exceeds a critical threshold. In mathematical models of QS behavior, these changes can include the switch-like emergence of intracellular oscillations through a Hopf bifurcation, or sudden transitions between bistable steady-states as a result of a saddle-node bifurcation of equilibria. As an example of this latter type of QS transition, we formulate and analyze a cell-bulk ODE-PDE model in a 2-D spatial domain that incorporates the prototypical LuxI/LuxR QS system for a collection of stationary bacterial cells, as modeled by small circular disks of a common radius with a cell membrane that is permeable only to the autoinducer. By using the method of matched asymptotic expansions, it is shown that the steady-state solutions for the cell-bulk model exhibit a saddle-node bifurcation structure. The linear stability of these branches of equilibria are determined from the analysis of a nonlinear matrix eigenvalue problem, called the globally coupled eigenvalue problem. The key role on QS behavior of a bulk degradation of the autoinducer field, which arises from either a Robin boundary condition on the domain boundary or from a constant bulk decay, is highlighted. With bulk degradation, it is shown analytically that the effect of coupling identical bacterial cells to the bulk autoinducer diffusion field is to create an effective bifurcation parameter that depends on the population of the colony, the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for an isolated cell. In the limit of a large but finite bulk diffusivity, it is shown that the cell-bulk system is well-approximated by a simpler ODE-DAE system. This reduced system, which is used to study the effect of cell location on QS behavior, is easily implemented for a large number of cells. Predictions from the asymptotic theory for QS transitions between bistable states are favorably compared with full numerical solutions of the cell-bulk ODE-PDE system.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B25 Singular perturbations in context of PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
92C05 Biophysics
92D25 Population dynamics (general)
92C37 Cell biology
93C15 Control/observation systems governed by ordinary differential equations
93C20 Control/observation systems governed by partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9(3):e02331-17
[2] Alciatore DG, Miranda R (1995) A winding number and point-in-polygon algorithm. Glaxo Virtual Anatomy Project Research Report, Department of Mechanical Engineering, Colorado State University
[3] Betcke T, Highan NG, Mehrmann V, Schröder C, Tisseur F (2013) NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans Math Softw, 39(2):7.1-7.28 · Zbl 1295.65140
[4] Chen, W.; Ward, MJ, The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J Appl Dyn Syst, 10, 2, 582-666 (2011) · Zbl 1223.35033 · doi:10.1137/09077357X
[5] Danø, S.; Madsen, MF; Sørensen, PG, Quantitative characterization of cell synchronization in yeast, Proc Natl Acad Sci, 104, 31, 12732-12736 (2007) · doi:10.1073/pnas.0702560104
[6] Danø, S.; Sørensen, PG; Hynne, F., Sustained oscillations in living cells, Nature, 402, 6759, 320-322 (1999) · doi:10.1038/46329
[7] De Monte S, d’Ovidio F, Danø S, Sørensen PG (2007) Dynamical quorum sensing: population density encoded in cellular dynamics. Proc Natl Acad Sci 104(47):18377-18381
[8] Dhooge, A.; Govaerts, W.; Kuznetsov, YA; Meijer, HGE; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math Comput Model Dyn Syst, 14, 2, 147-175 (2008) · Zbl 1158.34302 · doi:10.1080/13873950701742754
[9] Dockery, JD; Keener, JP, A mathematical model for quorum sensing in Pseudomonas aeruginosa, Bull Math Biol, 63, 1, 95-116 (2001) · Zbl 1323.92123 · doi:10.1006/bulm.2000.0205
[10] Fagerlind, MG; Rice, SA; Nilsson, P.; Harlén, M.; James, S.; Charlton, T.; Kjelleberg, S., The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa, J Mol Microbiol Biotechnol, 6, 2, 88-100 (2003) · doi:10.1159/000076739
[11] Fan, G.; Bressloff, P., Population model of quorum sensing with multiple parallel pathways, Bull Math Bio, 79, 11, 2599-2626 (2017) · Zbl 1382.92125 · doi:10.1007/s11538-017-0343-9
[12] Fan, G.; Bressloff, P., Modeling the role of feedback in the adaptive response of bacterial quorum sensing, Bull Math Bio, 81, 5, 1479-1505 (2019) · Zbl 1415.92071 · doi:10.1007/s11538-019-00570-8
[13] FlexPDE. PDE Solutions inc (2015). Available at http://www.pdesolutions.com
[14] Fuqua, WC; Winans, SC; Greenberg, EP, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators, J Bacteriol, 176, 2, 269-275 (1994) · doi:10.1128/jb.176.2.269-275.1994
[15] Goldbeter, A., Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour (1996), Cambridge: Cambridge University press, Cambridge · Zbl 0837.92009 · doi:10.1017/CBO9780511608193
[16] Gou, J.; Ward, MJ, An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion, J Nonlinear Sci, 26, 4, 979-1029 (2016) · Zbl 1439.92024 · doi:10.1007/s00332-016-9296-7
[17] Gregor, T.; Fujimoto, K.; Masaki, N.; Sawai, S., The onset of collective behavior in social amoebae, Science, 328, 5981, 1021-1025 (2010) · doi:10.1126/science.1183415
[18] Güttel, S.; Tisseur, F., The nonlinear eigenvalue problem, Acta Numerica, 26, 1, 1-94 (2017) · Zbl 1377.65061 · doi:10.1017/S0962492917000034
[19] Hou, S-H, Classroom note: a simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev, 40, 3, 706-709 (1998) · Zbl 0912.65035 · doi:10.1137/S003614459732076X
[20] Iyaniwura S, Ward MJ (2020) Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-sensing with small signaling compartments. submitted, SIAM J Appl Dyn Sys (40 pages) · Zbl 1462.35227
[21] James, S.; Nilsson, P.; James, G.; Kjelleberg, S.; Fagerström, T., Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation, J Mol Biol, 296, 4, 1127-1137 (2000) · doi:10.1006/jmbi.1999.3484
[22] Kaplan, HB; Greenberg, E., Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system, J Bacteriol, 163, 3, 1210-1214 (1985) · doi:10.1128/jb.163.3.1210-1214.1985
[23] Kato T (1995) Perturbation theory for linear operators, vol 132. Springer, Berlin, corrected printing of the second edition · Zbl 0836.47009
[24] Kolokolnikov, T.; Titcombe, MS; Ward, MJ, Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps, Eur J Appl Math, 16, 2, 161-200 (2005) · Zbl 1090.35070 · doi:10.1017/S0956792505006145
[25] Lohmiller, W.; Slotine, JJ, On contraction analysis for nonlinear systems, Automatica, 34, 6, 683-696 (1998) · Zbl 0934.93034 · doi:10.1016/S0005-1098(98)00019-3
[26] Mandel, P.; Erneux, T., The slow passage through a steady bifurcation: delay and memory effects, J Stat Phys, 48, 5-6, 1059-1070 (1987) · doi:10.1007/BF01009533
[27] Marenda, M.; Zanardo, M.; Trovato, A.; Seno, F.; Squartini, A., Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries, Sci Rep, 6, 39142 (2016) · doi:10.1038/srep39142
[28] The Mathworks, Inc., Natick, Massachusetts. (2018) MATLAB version 9.4.0.813654 (R2018a)
[29] Melke, P.; Sahlin, P.; Levchenko, A.; Jönsson, H., A cell-based model for quorum sensing in heterogeneous bacterial colonies, PLoS Comput Biol, 6, 6, e1000819 (2010) · doi:10.1371/journal.pcbi.1000819
[30] Miller, MB; Bassler, BL, Quorum sensing in bacteria, Annu Rev Microbiol, 55, 1, 165-199 (2001) · doi:10.1146/annurev.micro.55.1.165
[31] Müller, J.; Kuttler, C.; Hense, BA; Rothballer, M.; Hartmann, A., Cell-cell communication by quorum sensing and dimension-reduction, J Math Biol, 53, 4, 672-702 (2006) · Zbl 1113.92022 · doi:10.1007/s00285-006-0024-z
[32] Müller, J.; Uecker, H., Approximating the dynamics of communicating cells in a diffusive medium by ODEs - homogenization with localization, J Math Biol, 67, 5, 1023-1065 (2013) · Zbl 1277.35036 · doi:10.1007/s00285-012-0569-y
[33] Nanjundiah, V., Cyclic AMP oscillations in Dictyostelium discoideum: models and observations, Biophys Chem, 72, 1-2, 1-8 (1998) · doi:10.1016/S0301-4622(98)00118-5
[34] Nealson, KH; Platt, T.; Hastings, JW, Cellular control of the synthesis and activity of the bacterial luminescent system, J Bacteriol, 104, 1, 313-322 (1970) · doi:10.1128/jb.104.1.313-322.1970
[35] Papenfort, K.; Bassler, BL, Quorum sensing signal-response systems in gram-negative bacteria, Nat Rev Microbiol, 14, 9, 576-588 (2016) · doi:10.1038/nrmicro.2016.89
[36] Pearson, JP; Van Delden, C.; Iglewski, BH, Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals, J Bacteriol, 181, 4, 1203-1210 (1999) · doi:10.1128/JB.181.4.1203-1210.1999
[37] Pérez-Velázquez, J.; Gölgeli, M.; García-Contreras, R., Mathematical modelling of bacterial quorum sensing: a review, Bull Math Biol, 78, 8, 1585-1639 (2016) · Zbl 1352.92021 · doi:10.1007/s11538-016-0160-6
[38] Ridgway W (2020) Analysis of a 2D model of quorum sensing characterized by a transition from bistability in spatially coupled signalling compartments. Master’s thesis, The University of British Columbia, Vancouver, Canada
[39] Russo, G.; Slotine, JJ, Global convergence of quorum-sensing networks, Phys Rev E, 82, 4-1, 041919 (2010) · doi:10.1103/PhysRevE.82.041919
[40] Trovato, A.; Seno, F.; Zanardo, M.; Alberghini, S.; Tondello, A.; Squartini, A., Quorum vs. diffusion sensing: a quantitative analysis of the relevance of absorbing or reflecting boundaries, FEMS Microbiol Lett, 352, 2, 198-203 (2014) · doi:10.1111/1574-6968.12394
[41] Van Delden, C.; Iglewski, BH, Cell-to-cell signaling and Pseudomonas aeruginosa infections, Emerg Infect Dis, 4, 4, 551-560 (1998) · doi:10.3201/eid0404.980405
[42] Waters, CM; Bassler, BL, Quorum sensing: cell-to-cell communication in bacteria, Annu Rev Cell Dev Biol, 21, 319-346 (2005) · doi:10.1146/annurev.cellbio.21.012704.131001
[43] Williams, JW; Cui, X.; Levchenko, A.; Stevens, AM, Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops, Mol Syst Biol, 4, 234 (2008) · doi:10.1038/msb.2008.70
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.