×

The evolution of germ-soma specialization under different genetic and environmental effects. (English) Zbl 1480.92155

Summary: Division of labor exists at different levels of biological organization – from cell colonies to human societies. One of the simplest examples of the division of labor in multicellular organisms is germ-soma specialization, which plays a key role in the evolution of organismal complexity. Here we formulate and study a general mathematical model exploring the emergence of germ-soma specialization in colonies of cells. We consider a finite population of colonies competing for resources. Colonies are of the same size and are composed by asexually reproducing haploid cells. Each cell can contribute to activity and fecundity of the colony, these contributions are traded-off. We assume that all cells within a colony are genetically identical but gene effects on fecundity and activity are influenced by variation in the microenvironment experienced by individual cells. Through analytical theory and evolutionary agent-based modeling we show that the shape of the trade-off relation between somatic and reproductive functions, the type and extent of variation in within-colony microenvironment, and, in some cases, the number of genes involved, are important predictors of the extent of germ-soma specialization. Specifically, increasing convexity of the trade-off relation, the number of different environmental gradients acting within a colony, and the number of genes (in the case of random microenvironmental effects) promote the emergence of germ-soma specialization. Overall our results contribute towards a better understanding of the role of genetic, environmental, and microenvironmental factors in the evolution of germ-soma specialization.

MSC:

92D15 Problems related to evolution
92C37 Cell biology
92D10 Genetics and epigenetics
92D40 Ecology

Software:

clusfind
PDFBibTeX XMLCite
Full Text: DOI DOI

References:

[1] Amado, A.; Batista, C.; Campos, P., A theoretical approach to the size-complexity rule, Evolution, 72-1, 18-29 (2017)
[2] Amado, A.; Batista, C.; Campos, P., A mechanistic model for the evolution of multicellularity, Physica A, 492, 1543-1554 (2018) · Zbl 07546920
[3] Armbruster, C. R.; Lee, C. K.; Parker-Gilham, J.; de Anda, J.; Xia, A.; Zhao, K.; Murakami, K.; Tseng, B. S.; Hoffman, L. R.; Jin, F., Heterogeneity in surface sensing suggests a division of labor in pseudomonas aeruginosa populations, Elife, 8, Article e45084 pp. (2019)
[4] Berman-Frank, I.; Lundgren, P.; Falkowski, P., Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria, Res. Microbiol., 154, 3, 157-164 (2003)
[5] Beshers, S. N.; Fewell, J. H., Models of division of labor in social insects, Annu. Rev. Entomol., 46, 413-440 (2001)
[6] Bonner, J., Evolution of development in the cellular slime molds, Evol. Develop., 5, 305-313 (2003)
[7] Bonner, J. T., Perspective: The size-complexity rule, Evolution, 58, 1883-1890 (2004)
[8] Brumley, D.; Polin, M.; Pedley, T.; Goldstein, R., Metachronal waves in the flagellar beating of volvox and their hydrodynamic origin, J. R. Soc. Interface, 12, 108, 20141358 (2015)
[9] Cameron, E. S.; Arts, M. T.; Campbell, L. G., Mutation in algae-the increasing role of anthropogenic environmental stress, Phycologia, 58, 1, 2-8 (2019)
[10] Carroll, S., Chance and necessity: the evolution of morphological complexity and diversity, Nature, 409, 6823, 1102-1109 (2001)
[11] Chen, S.; Krinsky, B. H.; Long, M., New genes as drivers of phenotypic evolution, Nat. Rev. Genet., 14, 9, 645-660 (2013)
[12] Ciacci, M. (2021). Colorblindsets matlab central file exchange.
[13] Cooper, G.; West, S., Division of labour and the evolution of extreme specialization, Nat. Ecol. Evol., 2, 7, 1161-1167 (2018)
[14] de Jong, J., Quantitative genetics of reaction norms, J. Evol. Biol., 3, 447-468 (1990)
[15] de Oliveira, V.; Mendes, B.; Roque, M.; Campos, P., Extinction-colonization dynamics upon a survival-dispersal trade-off, Ecol. Complexity, 43, Article 100856 pp. (2020)
[16] Duarte, A.; Weissing, F.; Pen, I.; Keller, L., An evolutionary perspective on self-organized division of labor in social insects, Annu. Revi. Ecol. Evol. Syst., 42, 91-110 (2011)
[17] Durkheim, E., The division of labor in society (2014), Simon and Schuster
[18] Egas, M.; Dieckmann, U.; Sabelis, M., Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure, Am. Naturalist, 163, 4, 518-531 (2004)
[19] Fay, P., Oxygen relations of nitrogen fixation in cyanobacteria, Microbiol. Mol. Biol. Rev., 56, 2, 340-373 (1992)
[20] Flores, E.; Herrero, A., Compartmentalized function through cell differentiation in filamentous cyanobacteria, Nat. Rev. Microbiol., 8, 1, 39-50 (2010)
[21] Folse, H. J.; Roughgarden, J., What is an individual organism? A multilevel selection perspective, Q. Rev. Biol., 85, 446-472 (2010)
[22] Gavrilets, S., Rapid transition towards the division of labor via evolution of developmental plasticity, Plos Comput. Biol., 6 (2010)
[23] Gavrilets, S.; Scheiner, S., The genetics of phenotypic plasticity. v. evolution of reaction norm shape, J. Evol. Biol., 6, 31-48 (1993)
[24] Goldsby, H.; Knoester, D.; Ofria, C.; Kerr, B., The evolutionary origin of somatic cells under the dirty work hypothesis, PLoS Biol., 12, 5, Article e1001858 pp. (2014)
[25] Goldstein, R., Green algae as model organisms for biological fluid dynamics, Annu. Rev. Fluid Mech., 47, 343-375 (2015)
[26] Grosberg, R. K.; Strathmann, R. R., The evolution of multicellularity: A minor major transition?, Annu. Rev. Ecol. Syst., 38, 621-654 (2007)
[27] Herron, M.; Ghimire, S.; Vinikoor, C.; Michod, R., Fitness trade-offs and developmental constraints in the evolution of soma: An experimental study in a volvocine algae, Ecol. Evol. Biol., 16, 203-221 (2014)
[28] Herron, M. D.; Michod, R. E., Evolution of complexity in the volvocine algae: transition in individuality through Darwin’s eye, Evolution, 62, 436-451 (2007)
[29] Ispolatov, I.; Ackermann, M.; Doebeli, M., Division of labour and the evolution of multicellularity, Proc. R. Soc. London B, 279, 1768-1776 (2012)
[30] Kaessmann, H., Origins, evolution, and phenotypic impact of new genes, Genome Res., 20, 10, 1313-1326 (2010)
[31] Kaufman, L.; Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis (1990), John Wiley & Sons: John Wiley & Sons USA · Zbl 1345.62009
[32] Kirk, D., Germ-soma differentiation in Volvox, Develop. Biol., 238, 2, 213-223 (2001)
[33] Kirk, D., Seeking the ultimate and proximate causes of Volvox multicellularity and cellular differentiation, Integr. Comp. Biol., 43, 2, 247-253 (2003)
[34] Kirk, D., A twelve-step program for evolving multicellularity and a division of labor, Bioessays, 27, 3, 299-310 (2005)
[35] Konrad, K. A., Strategy and dynamics in contests (2009), Oxford University Press: Oxford University Press Oxford, United Kingdom · Zbl 1182.91004
[36] Leslie, M.; Shelton, D.; Michod, R., Generation time and fitness tradeoffs during the evolution of multicellularity, J. Theor. Biol., 430, 92-102 (2017) · Zbl 1382.92204
[37] Libby, E.; Ratcliff, W., Ratcheting the evolution of multicellularity, Science, 346, 6208, 426-427 (2014)
[38] Lie, S.; Banks, P.; Lawless, C.; Lydall, D.; Petersen, J., The contribution of non-essential schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity, Open Biol., 8, 5, Article 180015 pp. (2018)
[39] Long, M.; Betrán, E.; Thornton, K.; Wang, W., The origin of new genes: glimpses from the young and old, Nat. Rev. Genet., 4, 11, 865-875 (2003)
[40] Long, M.; VanKuren, N. W.; Chen, S.; Vibranovski, M. D., New gene evolution: little did we know, Annu. Rev. Genet., 47, 307-333 (2013)
[41] McShea, D., Functional complexity in organisms: Parts as proxies, Biol. Philos., 15, 641-668 (2000)
[42] Michod, R., Cooperation and conflict in the evolution of individuality, Proc. R. Soc. London B, 263, 1383, 813-822 (1996)
[43] Michod, R. (1997). Evolution of the individual. Am. Naturalist 150(Suppl. S), S5-S21.
[44] Michod, R., On the transfer of fitness from the cell to the multicellular organism, Biol. Philos., 20, 5, 967-987 (2005)
[45] Michod, R.; Viossat, Y.; Solari, C.; Hurand, M.; Nedelcu, A., Life-history evolution and the origin of multicellularity, J. Theor. Biol., 239, 2, 257-272 (2006) · Zbl 1445.92201
[46] Michod, R. E., The group covariance effect and fitness trade-offs during evolutionary transitions in individuality, Proc. Natl. Acad. Sci. USA, 103, 24, 9113-9117 (2006)
[47] Michod, R. E., Evolution of individuality during the transition from unicellular to multicellular life, Proc. Natl. Acad. Sci. U.S.A., 104, Suppl. 1, 8613-8618 (2007)
[48] Nedelcu, A., Environmentally induced responses co-opted for reproductive altruism, Biol. Lett., 5, 805-808 (2009)
[49] Nedelcu, A.; Michod, R., The evolutionary origin of an altruistic gene, Mol. Biol. Evol., 23, 8, 1460-1464 (2006)
[50] Panter-Brick, C., Sexual division of labor: energetic and evolutionary scenarios, Am. J. Human Biol., 14, 5, 627-640 (2002)
[51] Pichugin, Y.; Traulsen, A., Evolution of multicellular life cycles under costly fragmentation, PLoS Comput. Biol., 16, 11, Article e1008406 pp. (2020)
[52] Pichugin, Y.; Peña, J.; Rainey, P.; Traulsen, A., Fragmentation modes and the evolution of life cycles, Plos Comput. Biol., 13, 11 (2017)
[53] Pichugin, Y.; Park, H.; Traulsen, A., Evolution of simple multicellular life cycles in dynamic environments, J. R. Soc. Interface, 16, 154, 20190054 (2019)
[54] Reuffler, C.; Wagner, G., Evolution of functional specialization and division of labor, Proc. Natl. Acad. Sci. U.S.A., 109, 6, E326-E335 (2012)
[55] Robinson, G. E., Regulation of division of labor in insect societies, Annu. Rev. Entomol., 37, 637-665 (1992)
[56] Rodriguez-Clare, A., The division of labor and economic development, J. Dev. Econ., 49, 3-32 (1996)
[57] Rossetti, V.; Schirrmeister, B. E.; Bernasconi, M. V.; Bagheri, H. C., The evolutionary path to terminal differentiation and division of labor in cyanobacteria, J. Theor. Biol., 262, 23-34 (2010) · Zbl 1403.92187
[58] Rusch, H.; Gavrilets, S., The logic of animal intergroup conflict: a review, J. Econ. Behav. Organization (2017)
[59] Shelton, D.; Desnitskiy, A.; Michod, R., Distributions of reproductive and somatic cell numbers in diverse volvox (chlorophyta) species, Evol. Ecol. Res., 14, 707 (2012)
[60] Smith, A., (Sutherland, Kathryn, An Inquiry into the Nature and Causes of the Wealth of Nations: A Selected Edition Adam Smith (Author) (2008), Oxford Paperbacks: Oxford Paperbacks Oxford)
[61] Smith, J.; Szathmary, E., The Major Transitions in Evolution (1995), Freeman: Freeman San Francisco
[62] Staps, M.; van Gestel, J.; Tarnita, C., Emergence of diverse life cycles and life histories at the origin of multicellularity, Nat. Ecol. Evol., 3, 8, 1197-1205 (2019)
[63] Stigler, G., The division of labor is limited by the extent of the market, J. Polit. Econ., 59, 3, 185-193 (1951)
[64] Thatcher, J.; Shaw, J.; Dickinson, W., Marginal fitness contributions of nonessential genes in yeast, Proc. Natl. Acad. Sci., 95, 1, 253-257 (1998)
[65] Tullock, G., Efficient rent seeking, (Buchanan, J. M.; Tollison, R. D.; Tullock, G., Toward a theory of the rent-seeking society (1980), Texas A & M University: Texas A & M University College Station), 97-112
[66] Tverskoi, D.; Makarenkov, V.; Aleskerov, F., Modeling functional specialization of a cell colony under different fecundity and viability rates and resource constraint, Plos One, 13, 8 (2018)
[67] van Gestel, J. (2016). The evolution of bacterial cell differentiation and multicellular organization. Ph.D. thesis, University of Groningen.
[68] West, S.; Fisher, R.; Gardner, A.; Kiers, E., Major evolutionary transitions in individuality, Proc. Natl. Acad. Sci., 112, 33, 10112-10119 (2015)
[69] Willensdorfer, M., On the evolution of differentiated multicellularity, Evolution, 63, 2, 306-323 (2009)
[70] Wilson, E. O., One giant leap: how insects achieved altruism and colinial life, Bioscience, 58, 17-25 (2008)
[71] Yanni, D.; Jacobeen, S.; Márquez-Zacarías, P.; Weitz, J.; Ratcliff, W.; Yunker, P., Topological constraints in early multicellularity favor reproductive division of labor, Elife, 9, Article e54348 pp. (2020)
[72] Zacharia, V. M.; Ra, Y.; Sue, C.; Alcala, E.; Reaso, J. N.; Ruzin, S. E.; Traxler, M. F., Genetic network architecture and environmental cues drive spatial organization of phenotypic division of labor in streptomyces coelicolor, Mbio, 12, 3, e00794-21 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.