×

A note on Vietoris’ number sequence. (English) Zbl 1496.11039

Summary: The main purpose of this paper is to study some properties of Vietoris’ number sequence and present some techniques, using special types of matrices that generates this number sequence.

MSC:

11B83 Special sequences and polynomials
11B37 Recurrences
05A10 Factorials, binomial coefficients, combinatorial functions

Software:

OEIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aggarwal, D.; Joux, A.; Prakash, A.; Santha, M.; Shacham, H.; Boldyreva, A., A New Public-Key Cryptosystem via Mersenne Numbers, Advances in Cryptology-CRYPTO 2018. Lecture Notes in Computer Science (2018), Cham: Springer, Cham · Zbl 1454.94038
[2] Arslan, S.; Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of matrices, Int. Math. Forum, 11, 11, 513-520 (2016) · doi:10.12988/imf.2016.6442
[3] Arslan, S.; Köken, F., The Pell and Pell-Lucas numbers via square roots of matrices, J. Inform. Math. Sci., 8, 3, 159-166 (2016)
[4] Askey, R.; Steinig, J., Some positive trigonometric sums, Trans. AMS, 187, 1, 295-307 (1974) · Zbl 0244.42002 · doi:10.1090/S0002-9947-1974-0338481-3
[5] Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hardness of the Mersenne Low Hamming Ratio assumption. Tech. Rep. Cryptol. ePrint Archive, 2017/522 (2017) · Zbl 1454.94050
[6] Cação, I.; Falcão, MI; Malonek, HR, Matrix representations of a basic polynomial sequence in arbitrary dimension, Comput. Methods Funct. Theory, 12, 2, 371-391 (2012) · Zbl 1272.30069 · doi:10.1007/BF03321833
[7] Cação, I.; Falcão, MI; Malonek, HR, Hypercomplex polynomials, Vietoris’ rational numbers and a related integer numbers sequence, Complex Anal. Oper. Theory, 11, 5, 1059-1076 (2017) · Zbl 1375.30068 · doi:10.1007/s11785-017-0649-5
[8] Cação, I.; Falcão, MI; Malonek, HR, On generalized Vietoris’ number sequences, Discrete Appl. Math., 269, 77-85 (2019) · Zbl 1447.11042 · doi:10.1016/j.dam.2018.10.017
[9] Cahill, ND; D’Errico, JR; Narayan, DA; Narayan, JY, Fibonacci determinants, Coll. Math. J., 33, 3, 221-225 (2002) · Zbl 1046.11007 · doi:10.1080/07468342.2002.11921945
[10] Catarino, P.; Campos, H.; Vasco, P., On the Mersenne sequence, Annales Mathematicae et Informaticae, 46, 37-53 (2016) · Zbl 1374.11020
[11] Cerin, Z., On factors of sums of consecutive Fibonacci and Lucas numbers, Annales Mathematicae et Informaticae, 41, 19-25 (2013) · Zbl 1274.11036
[12] Cook, CK; Bacon, MR, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae, 41, 27-39 (2013) · Zbl 1274.11028
[13] Falcon, S., On the generating matrices of the k-Fibonacci numbers, Proyecciones, 32, 4, 347-357 (2013) · Zbl 1339.11012 · doi:10.4067/S0716-09172013000400004
[14] Faye, B.; Luca, L., Pell and Pell-Lucas numbers with only one distinct digit, Annales Mathematicae et Informaticae, 45, 55-60 (2015) · Zbl 1349.11023
[15] Kilic, E.; Tasci, D.; Haukkanen, P., On the generalized Lucas sequences by Hessenberg matrices, Ars Combinat., 95, 383-395 (2010) · Zbl 1249.11023
[16] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Volume II, First Edition, Wiley, (2019) · Zbl 1409.11001
[17] Koshy, T., Catalan Numbers with Applications (2009), New York: Oxford University Press Inc, New York · Zbl 1159.05001
[18] Koshy, T., Fibonacci and Lucas Numbers with Applications (2018), Hoboken: Wiley, Hoboken · Zbl 1409.11001 · doi:10.1002/9781118742297
[19] Koshy, T.; Gao, Z., Catalan numbers with Mersenne subscripts, Math. Sci., 38, 2, 86-91 (2013) · Zbl 1331.11010
[20] Kurosawa, T.; Tachiya, Y.; Tanaka, T., Algebraic relations with the infinite products generated by Fibonacci numbers, Annales Mathematicae et Informaticae, 41, 107-119 (2013) · Zbl 1274.11113
[21] Onphaeng, K., Pongsriiam, P.: Jacobsthal and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal and Tverberg. J. Integer Seq. 20 (2017). (Article 17.3.6) · Zbl 1381.11014
[22] Qi, F.; Guo, B-N, Integral representations of Catalan numbers and their applications, Mathematics, 5, 3, 40 (2017) · Zbl 1402.11032 · doi:10.3390/math5030040
[23] Qia, F.; Shic, X-T; Liud, F-F, An integral representation, complete monotonicity, and inequalities of the catalan numbers, Filomat, 32, 2, 575-587 (2018) · Zbl 1513.11088 · doi:10.2298/FIL1802575Q
[24] Ruscheweyh, ST; Salinas, L., Stable functions and Vietoris’ theorem, J. Math. Anal. Appl., 291, 596-604 (2004) · Zbl 1052.30011 · doi:10.1016/j.jmaa.2003.11.035
[25] Sloane, NJA; Plouffe, S., The Encyclopedia of Integer Sequences (1995), San Diego: Academic Press, San Diego · Zbl 0845.11001
[26] Sun, Z., Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math., 53, 2473-2488 (2010) · Zbl 1221.11054 · doi:10.1007/s11425-010-3151-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.