×

Speeding up \(N\)-body simulations of modified gravity: chameleon screening models. (English) Zbl 1515.83010


MSC:

83B05 Observational and experimental questions in relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

Software:

ECOSMOG; RAMSES
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, 2012 Modified gravity and cosmology, Phys. Rept.513 1 [1106.2476] · doi:10.1016/j.physrep.2012.01.001
[2] A. Joyce, L. Lombriser and F. Schmidt, 2016 Dark energy versus modified gravity, Ann. Rev. Nucl. Part. Sci.66 95 · doi:10.1146/annurev-nucl-102115-044553
[3] E.J. Copeland, M. Sami and S. Tsujikawa, 2006 Dynamics of dark energy, Int. J. Mod. Phys. D 15 1753 [hep-th/0603057] · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[4] SNLS collaboration, J. Guy et al., 2010 The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints, Astron. Astrophys.523 A7 [1010.4743] · doi:10.1051/0004-6361/201014468
[5] SDSS collaboration, W.J. Percival et al., 2010 Baryon Acoustic Oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc.401 2148 [0907.1660] · doi:10.1111/j.1365-2966.2009.15812.x
[6] F. Beutler et al., 2011 The 6dF galaxy survey: Baryon Acoustic Oscillations and the local Hubble constant, Mon. Not. Roy. Astron. Soc.416 3017 [1106.3366] · doi:10.1111/j.1365-2966.2011.19250.x
[7] B.A. Reid et al., 2012 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, Mon. Not. Roy. Astron. Soc.426 2719 [1203.6641] · doi:10.1111/j.1365-2966.2012.21779.x
[8] WMAP collaboration, G. Hinshaw et al., 2013 Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl.208 19 [1212.5226] · doi:10.1088/0067-0049/208/2/19
[9] A.G. Riess et al., 2009 A Redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder, Astrophys. J.699 539 [0905.0695] · doi:10.1088/0004-637X/699/1/539
[10] C.M. Will, 2014 The confrontation between general relativity and experiment Living Rev. Rel.17 4 · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[11] J. Khoury and A. Weltman, 2004 Chameleon cosmology, Phys. Rev. D 69 044026 [astro-ph/0309411] · doi:10.1103/PhysRevD.69.044026
[12] D.F. Mota and D.J. Shaw, 2007 Evading equivalence principle violations, cosmological and other experimental constraints in scalar field theories with a strong coupling to matter, Phys. Rev. D 75 063501 [hep-ph/0608078] · doi:10.1103/PhysRevD.75.063501
[13] T.P. Sotiriou and V. Faraoni, 2010 f(R) theories of gravity, Rev. Mod. Phys.82 451 [0805.1726] · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[14] B. Li and J.D. Barrow, 2007 The cosmology of f(R) gravity in metric variational approach, Phys. Rev. D 75 084010 [gr-qc/0701111] · doi:10.1103/PhysRevD.75.084010
[15] W. Hu and I. Sawicki, 2007 Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76 064004 [0705.1158] · doi:10.1103/PhysRevD.76.064004
[16] P. Brax, C. van de Bruck, A.-C. Davis and D.J. Shaw, 2008 f(R) gravity and chameleon theories, Phys. Rev. D 78 104021 [0806.3415] · doi:10.1103/PhysRevD.78.104021
[17] J. Wang, L. Hui and J. Khoury, 2012 No-go theorems for generalized chameleon field theories, Phys. Rev. Lett.109 241301 [1208.4612] · doi:10.1103/PhysRevLett.109.241301
[18] M. Raveri, B. Hu, N. Frusciante and A. Silverstri, 2014 Effective field theory of cosmic acceleration: constraining dark energy with CMB data, Phys. Rev. D 90 043513 [1405.1022] · doi:10.1103/PhysRevD.90.043513
[19] J. Ceron-Hurtado, J. He and B. Li, 2016 Heat transport in nonuniform superconductors, Phys. Rev. D 94 064502 · doi:10.1103/PhysRevB.94.064502
[20] P. Brax, C. van de Bruck, A.-C. Davis and D. Shaw, 2010 The dilaton and modified gravity, Phys. Rev. D 82 063519 [1005.3735] · doi:10.1103/PhysRevD.82.063519
[21] K. Hinterbichler and J. Khoury, 2010 Symmetron fields: screening long-range forces through local symmetry restoration, Phys. Rev. Lett.104 231301 [1001.4525] · doi:10.1103/PhysRevLett.104.231301
[22] H. Oyaizu, 2008 Non-linear evolution of f(R) cosmologies I: methodology, Phys. Rev. D 78 123523 [0807.2449] · doi:10.1103/PhysRevD.78.123523
[23] H. Oyaizu, M. Lima and W. Hu, 2008 Nonlinear evolution of f(R) cosmologies. 2. Power spectrum, Phys. Rev. D 78 123524 [0807.2462] · doi:10.1103/PhysRevD.78.123524
[24] F. Schmidt, M.V. Lima, H. Oyaizu and W. Hu, 2009 Non-linear evolution of f(R) cosmologies III: halo statistics, Phys. Rev. D 79 083518 [0812.0545] · doi:10.1103/PhysRevD.79.083518
[25] B. Li and H. Zhao, 2009 Structure formation by fifth force I: N-Body vs. linear simulations, Phys. Rev. D 80 044027 [0906.3880] · doi:10.1103/PhysRevD.80.044027
[26] H. Zhao, A.V. Maccio, B. Li, H. Hoekstra and M. Feix, 2010 Structure formation by fifth force: power spectrum from N-body simulations, Astrophys. J. Lett.712L 179 [0910.3207] · doi:10.1088/2041-8205/712/2/L179
[27] C. Llinares, A. Knebe and H. Zhao, 2008 Cosmological structure formation under MOND: a new numerical solver for Poisson’s equation, Mon. Not. Roy. Astron. Soc.391 1778 [0809.2899] · doi:10.1111/j.1365-2966.2008.13961.x
[28] B. Li and H. Zhao, 2010 Structure formation by the fifth force III: segregation of baryons and dark matter, Phys. Rev. D 81 104047 [1001.3152] · doi:10.1103/PhysRevD.81.104047
[29] G.-B. Zhao, B. Li and K. Koyama, 2011 N-body simulations for f(R) gravity using a self-adaptive particle-mesh code, Phys. Rev. D 83 044007 [1011.1257] · doi:10.1103/PhysRevD.83.044007
[30] G.-B. Zhao, B. Li and K. Koyama, 2011 Testing general relativity using the environmental dependence of dark matter halos, Phys. Rev. Lett.107 071303 [1105.0922] · doi:10.1103/PhysRevLett.107.071303
[31] Y. Li and W. Hu, 2011 Chameleon halo modeling in f(R) gravity, Phys. Rev. D 84 084033 [1107.5120] · doi:10.1103/PhysRevD.84.084033
[32] B. Li, G.-B. Zhao and K. Koyama, 2012 Halos and voids in f(R) gravity, Mon. Not. Roy. Astron. Soc.421 3481 [1111.2602] · doi:10.1111/j.1365-2966.2012.20573.x
[33] L. Lombriser, K. Koyama, G.-B. Zhao and B. Li, 2012 Chameleon f(R) gravity in the virialized cluster, Phys. Rev. D 85 124054 [1203.5125] · doi:10.1103/PhysRevD.85.124054
[34] J. Lee, G.-B. Zhao, B. Li and K. Koyama, 2013 Modified gravity spins up galactic halos, Astrophys. J.763 28 [1204.6608] · doi:10.1088/0004-637X/763/1/28
[35] E. Jennings, C.M. Baugh, B. Li, G.-B. Zhao and K. Koyama, 2012 Redshift space distortions in f(R) gravity, Mon. Not. Roy. Astron. Soc.425 2128 [1205.2698] · doi:10.1111/j.1365-2966.2012.21567.x
[36] B. Li, W.A. Hellwing, K. Koyama, G.-B. Zhao, E. Jennings and C.M. Baugh, 2013 The nonlinear matter and velocity power spectra in f(R) gravity, Mon. Not. Roy. Astron. Soc.428 743 [1206.4317] · doi:10.1093/mnras/sts072
[37] B. Li, G. Zhao, Roy. Teyssier and K. Koyama, 2012 ECOSMOG: an Efficient COde for Simulating MOdified Gravity J. Cosmol. Astropart. Phys.2012 01 051
[38] R. Teyssier, 2002 Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, Astron. Astrophys.385 337 [astro-ph/0111367] · doi:10.1051/0004-6361:20011817
[39] P. Brax, A.-C. Davis and B. Li, 2012 Modified gravity tomography, Phys. Lett. B 715 38 [1111.6613] · doi:10.1016/j.physletb.2012.08.002
[40] P. Brax, A.-C. Davis, B. Li and H.A. Winther, 2012 A unified description of screened modified gravity, Phys. Rev. D 86 044015 [1203.4812] · doi:10.1103/PhysRevD.86.044015
[41] P. Brax, A.C. Davis, B. Li, H.A. Winther and G. Zhao, 2012 Systematic simulations of modified gravity: symmetron and dilaton models J. Cosmol. Astropart. Phys.2012 10 002
[42] P. Brax, A.C. Davis, B. Li, H.A. Winther and G. Zhao, 2013 Systematic simulations of modified gravity: chameleon models J. Cosmol. Astropart. Phys.2013 04 029
[43] E. Puchwein, M. Baldi and V. Springel, 2013 Modified gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models, Mon. Not. Roy. Astron. Soc.436 348 [1305.2418] · doi:10.1093/mnras/stt1575
[44] C. Llinares, D.F. Mota and H.A. Winther, 2014 ISIS: a new N-body cosmological code with scalar fields based on RAMSES Code presentation and application to the shapes of clusters, Astron. Astrophys.562 78 · doi:10.1051/0004-6361/201322412
[45] H. Wilcox, R.C. Nichol, G.-B. Zhao, D. Bacon, K. Koyama and A.K. Romer, 2016 Simulation tests of galaxy cluster constraints on chameleon gravity, Mon. Not. Roy. Astron. Soc.462 715 [1603.05911] · doi:10.1093/mnras/stw1617
[46] H.A. Winther et al., 2015 Modified gravity n-body code comparison project, Mon. Not. Roy. Astron. Soc.454 4208 [1506.06384] · doi:10.1093/mnras/stv2253
[47] G.R. Dvali, G. Gabadadze and M. Porrati, 2000 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 208 [hep-th/0005016] · Zbl 0961.83045 · doi:10.1016/S0370-2693(00)00669-9
[48] P. Brax and P. Valageas, 2014 K-mouflage cosmology: the background evolution, Phys. Rev. D 90 023507 [1403.5420] · doi:10.1103/PhysRevD.90.023507
[49] P. Brax and P. Valageas, 2014 K-mouflage cosmology: formation of large-scale structures, Phys. Rev. D 90 023508 [1403.5424] · doi:10.1103/PhysRevD.90.023508
[50] A.I. Vainshtein, 1972 To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 393 · doi:10.1016/0370-2693(72)90147-5
[51] C. de Rham, G. Gabadadze and A.J. Tolley, 2011 Resummation of massive gravity, Phys. Rev. Lett.106 231101 [1011.1232] · doi:10.1103/PhysRevLett.106.231101
[52] F. Sbisa, G. Niz, K. Koyama and G. Tasinato, 2012 Characterising Vainshtein solutions in massive gravity, Phys. Rev. D 86 024033 [1204.1193] · doi:10.1103/PhysRevD.86.024033
[53] G. Chkareuli and D. Pirtskhalava, 2012 Vainshtein mechanism in \(Λ_3\)-theories, Phys. Lett. B 713 99 [1105.1783] · doi:10.1016/j.physletb.2012.05.030
[54] A. Nicolis, R. Rattazzi and E. Trincherini, 2009 The Galileon as a local modification of gravity, Phys. Rev. D 79 064036 [0811.2197] · doi:10.1103/PhysRevD.79.064036
[55] C. Deffayet, G. Esposito-Farese and A. Vikman, 2009 Covariant Galileon, Phys. Rev. D 79 084003 [0901.1314] · doi:10.1103/PhysRevD.79.084003
[56] C. Burrage and D. Seery, 2010 Revisiting fifth forces in the Galileon model J. Cosmol. Astropart. Phys.2010 08 011
[57] N. Kaloper, A. Padilla and N. Tanahashi, 2011 Galileon hairs of Dyson spheres, Vainshtein’s coiffure and Hirsute bubbles J. High Energy Phys. JHEP10(2011)148 [1106.4827] · Zbl 1303.83004 · doi:10.1007/JHEP10(2011)148
[58] A. De Felice, R. Kase and S. Tsujikawa, 2012 Vainshtein mechanism in second-order scalar-tensor theories, Phys. Rev. D 85 044059 [1111.5090] · doi:10.1103/PhysRevD.85.044059
[59] R. Kimura, T. Kobayashi and K. Yamamoto, 2012 Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory, Phys. Rev. D 85 024023 [1111.6749] · doi:10.1103/PhysRevD.85.024023
[60] N. Chow and J. Khoury, 2009 Galileon cosmology, Phys. Rev. D 80 024037 [0905.1325] · doi:10.1103/PhysRevD.80.024037
[61] F.P. Silva and K. Koyama, 2009 Self-accelerating universe in galileon cosmology, Phys. Rev. D 80 121301 [0909.4538] · doi:10.1103/PhysRevD.80.121301
[62] R. Gannouji and M. Sami, 2010 Galileon gravity and its relevance to late time cosmic acceleration, Phys. Rev. D 82 024011 [1004.2808] · doi:10.1103/PhysRevD.82.024011
[63] A. De Felice and S. Tsujikawa, 2010 Cosmology of a covariant Galileon field, Phys. Rev. Lett.105 111301 [1007.2700] · doi:10.1103/PhysRevLett.105.111301
[64] S. Nesseris, A. De Felice and S. Tsujikawa, 2010 Observational constraints on Galileon cosmology, Phys. Rev. D 82 124054 [1010.0407] · doi:10.1103/PhysRevD.82.124054
[65] A. Ali, R. Gannouji and M. Sami, 2010 Modified gravity a la Galileon: late time cosmic acceleration and observational constraints, Phys. Rev. D 82 103015 [1008.1588] · doi:10.1103/PhysRevD.82.103015
[66] P. Brax, C. Burrage and A.C. Davis, 2011 Laboratory tests of the Galileon J. Cosmol. Astropart. Phys.2011 09 020
[67] S.A. Appleby and E.V. Linder, 2012 The paths of gravity in galileon cosmology J. Cosmol. Astropart. Phys.2012 03 043
[68] S.A. Appleby and E.V. Linder, 2012 Trial of Galileon gravity by cosmological expansion and growth observations J. Cosmol. Astropart. Phys.2012 08 026
[69] A. Barreira, B. Li, C.M. Baugh and S. Pascoli, 2012 Linear perturbations in Galileon gravity models, Phys. Rev. D 86 124016 [1208.0600] · doi:10.1103/PhysRevD.86.124016
[70] J. Neveu et al., 2013 Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes, Astron. Astrophys.555 53 · doi:10.1051/0004-6361/201321256
[71] J. Noller and J. Magueijo, 2011 Non-Gaussianity in single field models without slow-roll, Phys. Rev. D 83 103511 [1102.0275] · doi:10.1103/PhysRevD.83.103511
[72] A. Barreira et al., 2014 Halo model and halo properties in Galileon gravity cosmologies J. Cosmol. Astropart. Phys.2014 04 029
[73] B. Falck, K. Koyama, G. B. Zhao and B. Li, 2014 The Vainshtein mechanism in the cosmic web J. Cosmol. Astropart. Phys.2014 07 058
[74] B. Falck, K. Koyama and G.B. Zhao, 2015 Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon J. Cosmol. Astropart. Phys.2015 07 049
[75] H. Okada, T. Totani and S. Tsujikawa, 2013 Constraints on f(R) theory and Galileons from the latest data of galaxy redshift surveys, Phys. Rev. D 87 103002 [1208.4681] · doi:10.1103/PhysRevD.87.103002
[76] M. Wyman, E. Jennings and M. Lima, 2013 Simulations of Galileon modified gravity: clustering statistics in real and redshift space, Phys. Rev. D 88 084029 [1303.6630] · doi:10.1103/PhysRevD.88.084029
[77] Y. Zu, D.H. Weinberg, E. Jennings, B. Li and M. Wyman, 2014 Galaxy infall kinematics as a test of modified gravity, Mon. Not. Roy. Astron. Soc.445 1885 [1310.6768] · doi:10.1093/mnras/stu1739
[78] A. Barreira, S. Bose, B. Li and C. Llinares, 2017 Weak lensing by galaxy troughs with modified gravity J. Cosmol. Astropart. Phys.2017 02 031 [1605.08436] · Zbl 1515.83200
[79] J. Neveu et al., Constraining the ΛCDM and Galileon models with recent cosmological data, [1605.02627]
[80] eROSITA collaboration, A. Merloni et al., eROSITA science book: mapping the Structure of the Energetic Universe, [1209.3114]
[81] http://www.mpe.mpg.de/eROSITA/
[82] EUCLID collaboration, R. Laureijs et al., Euclid Definition Study Report, [1110.3193]
[83] http://desi.lbl.gov/
[84] DESI collaboration, A. Aghamousa et al., The DESI experiment part I: science, targeting and survey design, [1611.00036]
[85] DESI collaboration, A. Aghamousa et al., The DESI experiment part II: instrument design, [1611.00037]
[86] DESI collaboration, M. Levi et al., The DESI experiment, a whitepaper for Snowmass 2013, [1308.0847]
[87] LSST collaboration, Z. Ivezic et al., LSST: from science drivers to reference design and anticipated data products, [0805.2366]
[88] K. Koyama, 2016 Cosmological tests of modified gravity, Rept. Progr. Phys.79 046902 · doi:10.1088/0034-4885/79/4/046902
[89] H.A. Winther and P.G. Ferreira, 2015 Fast route to nonlinear clustering statistics in modified gravity theories, Phys. Rev. D 91 123507 [1403.6492] · doi:10.1103/PhysRevD.91.123507
[90] A. Barreira, S. Bose and B. Li, 2015 Speeding up N-body simulations of modified gravity: Vainshtein screening models J. Cosmol. Astropart. Phys.2015 12 059
[91] B. Li and G. Efstathiou, 2012 An extended excursion set approach to structure formation in chameleon models, Mon. Not. Roy. Astron. Soc.421 1431 [1110.6440] · doi:10.1111/j.1365-2966.2011.20404.x
[92] G.-B. Zhao, 2014 Modeling the nonlinear clustering in modified gravity models. I. A fitting formula for the matter power spectrum of f(R) gravity, Astrophys. J. Suppl.211 23 [1312.1291] · doi:10.1088/0067-0049/211/2/23
[93] A.J. Mead, J.A. Peacock, L. Lombriser and B. Li, 2015 Rapid simulation rescaling from standard to modified gravity models, Mon. Not. Roy. Astron. Soc.452 4203 [1412.5195] · doi:10.1093/mnras/stv1484
[94] M. Cataneo, D. Rapetti, L. Lombriser and B. Li, 2016 Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function prediction J. Cosmol. Astropart. Phys.2016 12 024 [1607.08788]
[95] S. Bose, W.A. Hellwing and B. Li, 2015 Testing the quasi-static approximation in f(R) gravity simulations J. Cosmol. Astropart. Phys.2015 02 034
[96] B. Jain, V. Vikram and J. Sakstein, 2013 Astrophysical tests of modified gravity: constraints from distance indicators in the nearby universe, Astrophys. J.779 39 [1204.6044] · doi:10.1088/0004-637X/779/1/39
[97] V. Vikram, A. Cabre, B. Jain and J.T. Van der Plas, 2013 Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies J. Cosmol. Astropart. Phys.2013 08 020
[98] L. Lombriser, 2014 Constraining chameleon models with cosmology, Annalen Phys.526 259 [1403.4268] · Zbl 1297.83054 · doi:10.1002/andp.201400058
[99] C. Burrage and J. Sakstein, 2016 A Compendium of Chameleon Constraints J. Cosmol. Astropart. Phys.2016 11 045 [1609.01192]
[100] A. Terukina et al., 2014 Testing chameleon gravity with the Coma cluster J. Cosmol. Astropart. Phys.2014 04 013
[101] H. Wilcox et al., 2015 The XMM cluster survey: testing chameleon gravity using the profiles of clusters, Mon. Not. Roy. Astron. Soc.452 1171 [1504.03937] · doi:10.1093/mnras/stv1366
[102] M. Cataneo et al., 2015 New constraints on f(R) gravity from clusters of galaxies, Phys. Rev. D 92 044009 [1412.0133] · doi:10.1103/PhysRevD.92.044009
[103] X. Liu et al., 2016 Constraining f(R) gravity theory using weak lensing peak statistics from the Canada-France-Hawaii-Telescope lensing survey, Phys. Rev. Lett.117 051101 [1607.00184] · doi:10.1103/PhysRevLett.117.051101
[104] Y.-C. Cai, N. Padilla and B. Li, 2015 Testing gravity using cosmic voids, Mon. Not. Roy. Astron. Soc.451 1036 [1410.1510] · doi:10.1093/mnras/stv777
[105] S. Peirone, M. Raveri, M. Viel, S. Borgani and S. Ansoldi, 2017 Constraining f(R) Gravity with Planck Sunyaev-Zel’dovich Clusters, Phys. Rev. D 95 023521 [1607.07863] · doi:10.1103/PhysRevD.95.023521
[106] H. Martel and P.R. Shapiro, 1998 A convenient set of comoving cosmological variables and their application, Mon. Not. Roy. Astron. Soc.297 467 [astro-ph/9710119] · doi:10.1046/j.1365-8711.1998.01497.x
[107] A. Brandt, 1977 Multi-level adaptive solutions to boundary-value problems Math. Comp.31 333 · Zbl 0373.65054 · doi:10.1090/S0025-5718-1977-0431719-X
[108] V. Springel et al., 2005 Simulations of the formation, evolution and clustering of galaxies and quasars, Nature435 629 · doi:10.1038/nature03597
[109] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results XIII. Cosmological parameters, Astron. Astrophys.594 A13 · doi:10.1051/0004-6361/201525830
[110] WMAP collaboration, E. Komatsu et al., 2011 Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl.192 18 [1001.4538] · doi:10.1088/0067-0049/192/2/18
[111] S. Colombi, A.H. Jaffe, D. Novikov and C. Pichon, 2009 Accurate estimators of power spectra in N-body simulations, Mon. Not. Roy. Astron. Soc.393 511 [0811.0313] · doi:10.1111/j.1365-2966.2008.14176.x
[112] R. Juszkiewicz, F.R. Bouchet and S. Colombi, 1993 Skewness induced by gravity, Astrophys. J.412 L9 [astro-ph/9306003] · doi:10.1086/186927
[113] F. Bernardeau, 1994 Skewness and kurtosis in large-scale cosmic fields, Astrophys. J.433 1 [astro-ph/9312026] · doi:10.1086/174620
[114] W.A. Hellwing, B. Li, C.S. Frenk and S. Cole, 2013 Hierarchical clustering in chameleon f(R) gravity, Mon. Not. Roy. Astron. Soc.435 2806 [1305.7486] · doi:10.1093/mnras/stt1430
[115] M.A. Strauss et al., 1992 A redshift survey of IRAS galaxies. V — The acceleration on the Local Group, Astrophys. J.397 395 · doi:10.1086/171796
[116] M.J. Chodorowski and P. Ciecielag, 2002 Local group velocity versus gravity: the coherence function, Mon. Not. Roy. Astron. Soc.331 133 [astro-ph/0109291] · doi:10.1046/j.1365-8711.2002.05161.x
[117] D. Shi, B. Li, J. Han, L. Gao and W.A. Hellwing, 2015 Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity, Mon. Not. Roy. Astron. Soc.452 3179 [1503.01109] · doi:10.1093/mnras/stv1549
[118] A. Hammami, C. Llinares, D.F. Mota and H.A. Winther, 2015 Hydrodynamic effects in the symmetron and f(R)-gravity models, Mon. Not. Roy. Astron. Soc.449 3635 [1503.02004] · doi:10.1093/mnras/stv529
[119] C. Arnold, V. Springel and E. Puchwein, 2016 Zoomed cosmological simulations of Milky Way-sized haloes in f(R) gravity, Mon. Not. Roy. Astron. Soc.462 1530 [1604.06095] · doi:10.1093/mnras/stw1708
[120] B. Li, G.B. Zhao and K. Koyama, 2013 Exploring Vainshtein mechanism on adaptively refined meshes J. Cosmol. Astropart. Phys.2013 05 023
[121] B. Li et al., 2013 Simulating the quartic Galileon gravity model on adaptively refined meshes J. Cosmol. Astropart. Phys.2013 11 012
[122] A. Barreira et al., 2013 Nonlinear structure formation in the cubic Galileon gravity model J. Cosmol. Astropart. Phys.2013 10 027
[123] A.-C. Davis, B. Li, D.F. Mota and H.A. Winther, 2012 Structure formation in the symmetron model, Astrophys. J.748 61 [1108.3081] · doi:10.1088/0004-637X/748/1/61
[124] C. Llinares and L. Pogosian, 2014 Domain walls coupled to matter: the symmetron example, Phys. Rev. D 90 124041 [1410.2857] · doi:10.1103/PhysRevD.90.124041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.