×

Transient growth analysis of hypersonic flow over an elliptic cone. (English) Zbl 07469326

Summary: Non-modal linear stability analysis results are presented for hypersonic flow over an elliptic cone with an aspect ratio of two at zero angle of attack, completing earlier modal instability analysis of flow around the same geometry. The theoretical framework to perform transient growth analysis of compressible flows on a generalized two-dimensional frame of reference is developed for the first time and is then applied to solve the initial-value problem governing non-modal linear instability on planes perpendicular to the cone axis, taken at successive streamwise locations along the elliptic cone. Parameter ranges examined here are chosen so as to model flight of the Hypersonic International Flight Research Experimentation 5 (HIFiRE-5) test geometry at altitudes of 21 km and 33 km, corresponding to Mach numbers 7.45 and 8.05 and unit Reynolds numbers \(Re' = 1.07\times 10^7\) and \(1.89\times 10^6\), respectively. Results obtained indicate that the significance of the non-modal growth for laminar-turbulent transition increases with increasing flight altitude (decreasing Reynolds number). At a given set of flow parameters, transient growth is stronger in the vicinity of the tip of the cone and in azimuthal locations away from both of the minor (centreline) and major (attachment line) axes of the cone. Linear optimal disturbances calculated at conditions of maximal transient growth are found to peak in the crossflow region of the elliptic cone. These structures are elongated along the streamwise spatial direction, while being periodic along the spanwise direction with periodicity lengths of the same order of magnitude as the well-known structures identified as crossflow vortices in both experiments and simulations.

MSC:

76-XX Fluid mechanics

Software:

ScaLAPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdessemed, N., Sharma, A.S., Sherwin, S.J. & Theofilis, V.2009aTransient growth analysis of the flow past a circular cylinder. Phys. Fluids21 (4), 044103. · Zbl 1183.76061
[2] Abdessemed, N., Sherwin, S.J. & Theofilis, V.2009bLinear instability analysis of low pressure turbine flows. J. Fluid Mech.628, 57-83. · Zbl 1181.76066
[3] Adamczak, D., Kimmel, R., , Paull, A. & Alesi, H.2011 HIFiRE-1 flight trajectory estimation and initial experimental results. In 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA Paper 2011-2358.
[4] Alizard, F. & Robinet, J.-C.2007Spatially convective global modes in a boundary layer. Phys. Fluids19 (11), 114105. · Zbl 1182.76019
[5] Alves, L.S., Santos, R.D., Cerulus, N. & Theofilis, V.2019 Steady-states of supersonic flows over compression ramps. In AIAA Scitech 2019 Forum. AIAA Paper 2019-2321.
[6] Arnoldi, W.E.1951The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Maths9, 17-29. · Zbl 0042.12801
[7] Baurle, R.A., White, J.A., Drozda, T.G. & Norris, A.T.2020 Vulcan-CFD theory manual: version 7.1. 0. Tech. Rep. NTRS Report Number TM-2020-5000766, Hampton, VA.
[8] Bippes, H.1999Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci.35, 363-412.
[9] Blackburn, H.M., Barkley, D. & Sherwin, S.J.2008Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech.603, 271-304. · Zbl 1151.76470
[10] Blackford, L.S., et al.1996 ScaLAPACK: a portable linear algebra library for distributed memory computers – design issues and performance. Available at: http://www.netlib.org/scalapack/. · Zbl 0926.65148
[11] Borg, M.P. & Kimmel, R.L.2018Ground test of transition for HIFiRE-5b at flight-relevant attitudes. J. Spacecr. Rockets55 (6), 1329-1340.
[12] Borg, M., Kimmel, R. & Stanfield, S.2012 Crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel. In 42nd AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2012-2821.
[13] Cerulus, N., Dos Santos, R., Quintanilha, H. Jr., Alves, L. & Theofilis, V2020 Stability of laminar supersonic flow on compression ramps. In 73rd Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society.
[14] Cerulus, N., Quintanilha, H. Jr. & Theofilis, V.2021 Global linear stability analysis of the supersonic flows over a hollow cylinder flare model. In AIAA Scitech 2021 Forum. AIAA Paper 2021-0052.
[15] Cheatwood, F.M. & Gnoffo, P.A.1996 User’s manual for the Langley aerothermodynamic upwind relaxation algorithm (LAURA). Tech. Rep. NASA TM-4764.
[16] Choudhari, M., Chang, C.-L., Jentink, T., Li, F., Berger, K., Candler, G. & Kimmel, R.2009 Transition analysis for the HIFiRE-5 vehicle. In 39th AIAA Fluid Dynamics Conference. AIAA Paper 2009-4056.
[17] Choudhari, M.M., Li, F. & Paredes, P.2020 Streak instabilities on HIFiRE-5 elliptic cone. In AIAA Scitech 2020 Forum. AIAA Paper 2020-0828.
[18] Chu, B.-T.1965On the energy transfer to small disturbances in fluid flow (part I). Acta Mechanica1 (3), 215-234.
[19] Corbett, P. & Bottaro, A.2001Optimal linear growth in swept boundary layers. J. Fluid Mech.435, 1-23. · Zbl 0987.76021
[20] Dinzl, D.J. & Candler, G.V.2017Direct simulation of hypersonic crossflow instability on an elliptic cone. AIAA J.55 (6), 1769-1782.
[21] Dolvin, D.2008 Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA Paper 2008-2581.
[22] Dovgal, A.V., Kozlov, V.V. & Michalke, A.1994Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci.30 (1), 61-94.
[23] Gosse, R., Kimmel, R. & Johnson, H.2010 CFD study of the HIFiRE-5 flight experiment. In 40th Fluid Dynamics Conference and Exhibit. AIAA Paper 2010-4854.
[24] Gosse, R., Kimmel, R. & Johnson, H.B.2013Study of boundary-layer transition on hypersonic international flight research experimentation 5. J. Spacecr. Rockets51 (1), 151-162.
[25] Hanifi, A., Schmid, P.J. & Henningson, D.S.1996Transient growth in compressible boundary layer flow. Phys. Fluids8 (3), 826-837. · Zbl 1025.76536
[26] He, W., Gioria, R.S., Pérez, J.M. & Theofilis, V.2017Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech.811, 701-741. · Zbl 1383.76229
[27] Holden, M.S.1998 Experimental studies of laminar, transitional, and turbulent hypersonic flows over elliptic cones at angles of attack. Tech. Rep. CALSPAN UB Research Center, Buffalo, NY.
[28] Huntley, M. & Smits, A.2000Transition studies on an elliptic cone in Mach 8 flow using filtered Rayleigh scattering. Eur. J. Mech. (B/Fluids)19 (5), 695-706. · Zbl 0960.76505
[29] Juliano, T.J., Adamczak, D. & Kimmel, R.L.2014 HIFiRE-5 flight test heating analysis. In 52nd Aerospace Sciences Meeting. AIAA Paper 2014-0076.
[30] Juliano, T.J., Borg, M.P. & Schneider, S.P.2015Quiet tunnel measurements of HIFiRE-5 boundary-layer transition. AIAA J.53 (4), 832-846.
[31] Juliano, T. & Schneider, S.2010 Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel. In 40th Fluid Dynamics Conference and Exhibit. AIAA Paper 2010-5004.
[32] Kimmel, R.2008 Aerothermal design for the HIFiRE flight vehicle. In 38th Fluid Dynamics Conference and Exhibit. AIAA Paper 2008-4034.
[33] Kimmel, R., Adamczak, D., Berger, K. & Choudhari, M.2010 HIFiRE-5 flight vehicle design. In 40th Fluid Dynamics Conference and Exhibit. AIAA Paper 2010-4985.
[34] Kimmel, R.L., Adamczak, D.W., Borg, M.P., Jewell, J.S., Juliano, T.J., Stanfield, S.A. & Berger, K.T.2019First and fifth hypersonic international flight research experimentation’s flight and ground tests. J. Spacecr. Rockets56 (2), 421-431.
[35] Kimmel, R., Adamczak, D., Gaitonde, D., Rougeux, A. & Hayes, J.2007 HIFiRE-1 boundary layer transition experiment design. In 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2007-534.
[36] Kimmel, R.L., Adamczak, D., Hartley, D., Alesi, H., Frost, M.A., Pietsch, R., Shannon, J. & Silvester, T.2017 HIFiRE-5b flight overview. In 47th AIAA Fluid Dynamics Conference. AIAA Paper 2017-3131.
[37] Kimmel, R.L., Adamczak, D.W., Hartley, D., Alesi, H., Frost, M.A., Pietsch, R., Shannon, J. & Silvester, T.2018Hypersonic international flight research experimentation-5b flight overview. J. Spacecr. Rockets55 (6), 1303-1314.
[38] Kimmel, R., Adamczak, D., Juliano, T. & Paull, A.2013 HIFiRE-5 flight test preliminary results. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA Paper 2013-377.
[39] Kimmel, R., Adamczak, D., Paull, A., Paull, R., Shannon, J., Pietsch, R., Frost, M. & Alesi, H.2011 HIFiRE-1 preliminary aerothermodynamic measurements. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3413.
[40] Kimmel, R.L., Poggie, J. & Schwoerke, S.N.1999Laminar-turbulent transition in a Mach 8 elliptic cone flow. AIAA J.37 (9), 1080-1087.
[41] Li, F., Choudhari, M., Chang, C.-L., Kimmel, R., Adamczak, D. & Smith, M.2011 Transition analysis for the HIFiRE-1 flight experiment. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3414.
[42] Li, F., Choudhari, M., Chang, C.-L., White, J., Kimmel, R., Adamczak, D., Borg, M., Stanfield, S. & Smith, M.2012 Stability analysis for HIFiRE experiments. In 42nd AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2012-2961.
[43] Lin, R.S. & Malik, M.R.1997On the stability of attachment-line boundary layers. Part 2. The effect of leading-edge curvature. J. Fluid Mech.333, 125-137. · Zbl 0891.76026
[44] Luchini, P.1996Reynolds-number-independent instability of the boundary layer over a flat surface. J. Fluid Mech.327, 101-115. · Zbl 0883.76034
[45] Luchini, P. & Bottaro, A.2014Adjoint equations in stability analysis. Annu. Rev. Fluid Mech.46. · Zbl 1297.76068
[46] Lyttle, I. & Reed, H.1995 Use of transition correlations for three-dimensional boundary layers within hypersonic flows. In Fluid Dynamics Conference. AIAA Paper 95-2293.
[47] Mack, L.M.1969 Boundary layer stability theory. Rep. 900-277. Rev. A, vol. 22. Jet Propulsion Laboratory, Pasadena, CA.
[48] Meliga, P., Gallaire, F. & Chomaz, J.-M.2012A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech.699, 216-262. · Zbl 1248.76071
[49] Moller, C. & Van Loan, C.1978Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev.20, 801-836. · Zbl 0395.65012
[50] Moller, C. & Van Loan, C.2003Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev.45, 3-000. · Zbl 1030.65029
[51] Moyes, A.J., Kocian, T.S., Mullen, D. & Reed, H.L.2018Boundary-layer stability analysis of HIFiRE-5b flight geometry. J. Spacecr. Rockets55 (6), 1341-1355.
[52] Nompelis, I., Drayna, T. & Candler, G.2005 A parallel unstructured implicit solver for hypersonic reacting flow simulation. In Parallel Computational Fluid Dynamics 2005. AIAA Paper 2005-4867.
[53] Obrist, D. & Schmid, P.J.2003On the linear stability of swept attachment-line boundary layer flow. Part 2. Non-modal effects and receptivity. J. Fluid Mech.493, 31. · Zbl 1063.76025
[54] Paredes, P.2014 Advances in global instability computations: from incompressible to hypersonic flow. PhD thesis, Technical University of Madrid.
[55] Paredes, P., Choudhari, M.M. & Li, F.2017Blunt-body paradox and transient growth on a hypersonic spherical forebody. Phys. Rev. Fluids2 (5), 053903.
[56] Paredes, P., Choudhari, M.M. & Li, F.2018Blunt-body paradox and improved application of transient-growth framework. AIAA J.56, 1-11.
[57] Paredes, P., Choudhari, M., Li, F., Jewell, J., Kimmel, R., Marineau, E. & Gossir, G.2019Nosetip bluntness effects on transition at hypersonic speeds. J. Spacecr. Rockets56 (2), 369-387.
[58] Paredes, P., Gosse, R., Theofilis, V. & Kimmel, R.2016Linear modal instabilities of hypersonic flow over an elliptic cone. J. Fluid Mech.804, 442-466.
[59] Paredes, P. & Theofilis, V.2015Centerline instabilities on the hypersonic international flight research experimentation HIFiRE-5 elliptic cone model. J. Fluids Struct.53, 36-49.
[60] Quintanilha, H. Jr.2021 Linear global nonmodal instability analysis of high-speed flows. PhD thesis, University of Liverpool.
[61] Quintanilha, H. Jr., Belesiotis, P., Theofilis, V. & Hanifi, A.2018 Nonmodal stability analysis of the HIFiRE-5 elliptic cone model flow in different flight altitudes. In 58th Israel Annual Conference on Aerospace Sciences, IACAS 2018.
[62] Quintanilha, H. Jr., Cerulus, N. & Theofilis, V.2020 Linear instability mechanisms of supersonic flow over a hollow cylinder flare model. In 73rd Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society.
[63] Quintanilha, H. Jr., Santos, R., Alves, L. & Theofilis, V.2017 Distributed solution of global eigenvalue problems on large clusters. In 23rd AIAA Computational Fluid Dynamics Conference. AIAA Paper 2017-4510.
[64] Quintanilha, H. Jr., Theofilis, V. & Hanifi, A.2019 Global transient-growth analysis of hypersonic flow on the HIFiRE-5 elliptic cone model. In AIAA Scitech 2019 Forum. AIAA Paper 2019-2148.
[65] Reshotko, E. & Tumin, A.2004Role of transient growth in roughness-induced transition. AIAA J.42 (4), 766-770.
[66] Saad, Y.1980Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebr. Applics.34, 269-295. · Zbl 0456.65017
[67] Schmid, P.J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39, 129-162. · Zbl 1296.76055
[68] Schmid, P.J. & Henningson, D.S.1994Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech.277, 197-225. · Zbl 0888.76024
[69] Schmid, P. & Henningson, D.S.2001Stability and Transition in Shear Flows. Springer. · Zbl 0966.76003
[70] Schmisseur, J.D., Schneider, S.P. & Collicott, S.H.1998 Receptivity of the Mach-4 boundary-layer on an elliptic cone to laser-generated localized free stream perturbations. In 36th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 98-0532.
[71] Schmisseur, J.D., Schneider, S.P. & Collicott, S.H.1999 Response of the Mach-4 boundary layer on an elliptic cone to laser-generated free stream perturbations. In 37th Aerospace Sciences Meeting and Exhibit. AIAA Paper 99-0410.
[72] Schneider, S.P.2004Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci.40 (1-2), 1-50.
[73] Sharma, A.S., Abdessemed, N., Sherwin, S.J. & Theofilis, V.2011Transient growth mechanisms of low Reynolds number flow over a low-pressure turbine blade. Theor. Comput. Fluid Dyn.25 (1-4), 19-30. · Zbl 1272.76125
[74] Sherwin, S.J. & Blackburn, H.M.2005Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech.533, 297-327. · Zbl 1074.76021
[75] Shi, M., Zhu, W. & Lee, C.2020Engineering model for transition prediction based on a hypersonic quiet wind tunnel. AIAA J.58, 1-10.
[76] Stanfield, S., Kimmel, R. & Adamczak, D.2012 HIFiRE-1 flight data analysis: turbulent shock-boundary-layer interaction experiment during ascent. In 42nd AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2012-2703.
[77] Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., Mckeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S.2017Modal analysis of fluid flows: an overview. AIAA J.55 (12), 4013-4041.
[78] Tempelmann, D., Hanifi, A. & Henningson, D.S.2010Spatial optimal growth in three-dimensional boundary layers. J. Fluid Mech.646, 5-37. · Zbl 1189.76221
[79] Tempelmann, D., Hanifi, A. & Henningson, D.S.2012Spatial optimal growth in three-dimensional compressible boundary layers. J. Fluid Mech.704, 251-279. · Zbl 1246.76025
[80] Theofilis, V.2000 On steady laminar basic flows and their global eigenmodes: an elliptic cone in compressible flow. Final Report F61775-99-WE049. European Office of Aerospace Research and Development.
[81] Theofilis, V.2002 Inviscid global linear instability of compressible flow on an elliptic cone: algorithmic developments. Final Report F61775-99-WE049. European Office of Aerospace Research and Development.
[82] Theofilis, V.2003Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci.39 (4), 249-315.
[83] Theofilis, V.2011 PSE-3D instability analysis and application to flow over an elliptic cone. Tech. Rep. FA8655-06-1-3066. EOARD Final Report.
[84] Theofilis, V.2017The linearized pressure Poisson equation for global instability analysis of incompressible flows. Theor. Comput. Fluid Dyn.31, 623-642.
[85] Theofilis, V.2020 Massively parallel solution of the global linear instability non-symmetric complex generalized eigenvalue problem. In 60th Israel Annual Conference on Aerospace Sciences, IACAS 2020.
[86] Theofilis, V., Hein, S. & Dallmann, U.2000On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A: Math. Phys. Engng Sci.358 (1777), 3229-3246. · Zbl 1106.76363
[87] Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A.1993Hydrodynamic stability without eigenvalues. Science261 (5121), 578-584. · Zbl 1226.76013
[88] Tufts, M.W., Borg, M.P., Gosse, R.C. & Kimmel, R.L.2018a Collaboration between flight test, ground test, and computation on HIFiRE-5. In 2018 Applied Aerodynamics Conference. AIAA Paper 2018-3807.
[89] Tufts, M.W., Gosse, R.C. & Kimmel, R.L.2018bParabolized stability equation analysis of crossflow instability on HIFiRE-5b flight test. J. Spacecr. Rockets55 (6), 1369-1378.
[90] Tumin, A. & Reshotko, E.2001Spatial theory of optimal disturbances in boundary layers. Phys. Fluids13 (7), 2097-2104. · Zbl 1184.76562
[91] Tumin, A. & Reshotko, E.2003Optimal disturbances in compressible boundary layers. AIAA J.41 (12), 2357-2363.
[92] Zuccher, S., Shalaev, I., Tumin, A. & Reshotko, E.2007Optimal disturbances in the supersonic boundary layer past a sharp cone. AIAA J.45 (2), 366-373.
[93] Zuccher, S., Tumin, A. & Reshotko, E.2006Parabolic approach to optimal perturbations in compressible boundary layers. J. Fluid Mech.556, 189-216. · Zbl 1147.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.