×

Comparison of different approaches to the quasi-static approximation in Horndeski models. (English) Zbl 1485.83055

Summary: A quasi-static approximation (QSA) for modified gravity can be applied in a number of ways. We consider three different analytical formulations based on applying this approximation to: (1) the field equations; (2) the equations for the two metric potentials; (3) the use of the attractor solution derived within the Equation of State approach. We assess the veracity of these implementations on the effective gravitational constant (\(\mu\)) and the slip parameter (\(\eta\)), within the framework of Horndeski models. In particular, for a set of models we compare cosmological observables, i.e., the matter power spectrum and the CMB temperature and lensing angular power spectra, computed using the QSA, with exact numerical solutions. To do that, we use a newly developed branch of the CLASS code: QSA_class. All three approaches agree exactly on very small scales. Typically, we find that, except for \(f(R)\) models where all the three approaches lead to the same result, the quasi-static approximations differ from the numerical calculations on large scales (\(k\lesssim 3\)–\(4 \times 10^{-3}\,h\,\mathrm{Mpc}^{-1}\)). Cosmological observables are reproduced to within 1% up to scales \(\mathrm{K} = k/H_0\) of the order of a few and multipoles \(\ell >5\) for the approaches based on the field equations and on the Equation of State, and we also do not find any appreciable difference if we use the scale-dependent expressions for \(\mu\) and \(\eta\) with respect to the value on small scales, showing that the formalism and the conclusions are reliable and robust, fixing the range of applicability of the formalism. We discuss why the expressions derived from the equations for the potentials have limited applicability. Our results are in agreement with previous analytical estimates and show that the QSA is a reliable tool and can be used for comparison with current and future observations to constrain models beyond \(\Lambda\)CDM.

MSC:

83C56 Dark matter and dark energy
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
80A10 Classical and relativistic thermodynamics
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering

Software:

CAMB; CLASS; MGCAMB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Supernova Search Team Collaboration; Riess, Adam G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998) · doi:10.1086/300499
[2] Supernova Cosmology Project Collaboration; Perlmutter, S., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002 · doi:10.1086/307221
[3] Riess, Adam G., New Hubble Space Telescope Discoveries of Type Ia Supernovae at z=1: Narrowing Constraints on the Early Behavior of Dark Energy, Astrophys. J., 659, 98-121 (2007) · doi:10.1086/510378
[4] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[5] Planck Collaboration; Aghanim, N., Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys., 641, A8 (2020) · doi:10.1051/0004-6361/201833886
[6] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[7] DES Collaboration; Abbott, T. M. C., Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043526
[8] DES Collaboration; Gruen, D., Density Split Statistics: Cosmological Constraints from Counts and Lensing in Cells in DES Y1 and SDSS Data, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.023507
[9] Weinberg, Steven; Hsu, Jong-Ping; Fine, D., The Cosmological Constant Problem, Rev. Mod. Phys., 61, 1-23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[10] Burgess, C. P., The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics (2013) · Zbl 1326.83006
[11] Padilla, Antonio, Lectures on the Cosmological Constant Problem (2015)
[12] Joyce, Austin; Jain, Bhuvnesh; Khoury, Justin; Trodden, Mark, Beyond the Cosmological Standard Model, Phys. Rept., 568, 1-98 (2015) · doi:10.1016/j.physrep.2014.12.002
[13] Joyce, Austin; Lombriser, Lucas; Schmidt, Fabian, Dark Energy Versus Modified Gravity, Ann. Rev. Nucl. Part. Sci., 66, 95-122 (2016) · doi:10.1146/annurev-nucl-102115-044553
[14] Koyama, Kazuya, Cosmological Tests of Modified Gravity, Rept. Prog. Phys., 79 (2016) · doi:10.1088/0034-4885/79/4/046902
[15] Sami, M.; Myrzakulov, R., Late time cosmic acceleration: ABCD of dark energy and modified theories of gravity, Int. J. Mod. Phys. D, 25 (2016) · Zbl 1351.83001 · doi:10.1142/S0218271816300317
[16] Beltran Jimenez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Rubiera-Garcia, Diego, Born-Infeld inspired modifications of gravity, Phys. Rept., 727, 1-129 (2018) · Zbl 1381.83095 · doi:10.1016/j.physrep.2017.11.001
[17] Ishak, Mustapha, Testing General Relativity in Cosmology, Living Rev. Rel., 22, 1 (2019) · doi:10.1007/s41114-018-0017-4
[18] Amendola, Luca, Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel., 21, 2 (2018) · doi:10.1007/s41114-017-0010-3
[19] Heisenberg, Lavinia, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept., 796, 1-113 (2019) · doi:10.1016/j.physrep.2018.11.006
[20] Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott, Probing Gravity at Cosmological Scales by Measurements which Test the Relationship between Gravitational Lensing and Matter Overdensity, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.141302
[21] Amendola, Luca; Kunz, Martin; Sapone, Domenico, Measuring the dark side (with weak lensing), JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/013
[22] Bertschinger, Edmund; Zukin, Phillip, Distinguishing Modified Gravity from Dark Energy, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.024015
[23] Bean, Rachel; Tangmatitham, Matipon, Current constraints on the cosmic growth history, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.083534
[24] Pogosian, Levon; Silvestri, Alessandra; Koyama, Kazuya; Zhao, Gong-Bo, How to optimally parametrize deviations from General Relativity in the evolution of cosmological perturbations?, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.104023
[25] Silvestri, Alessandra; Pogosian, Levon; Buniy, Roman V., Practical approach to cosmological perturbations in modified gravity, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.104015
[26] De Felice, Antonio; Tsujikawa, Shinji, Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models, JCAP, 02 (2012) · doi:10.1088/1475-7516/2012/02/007
[27] Bellini, Emilio; Sawicki, Ignacy, Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity, JCAP, 07 (2014) · doi:10.1088/1475-7516/2014/07/050
[28] Gleyzes, Jérôme; Langlois, David; Vernizzi, Filippo, A unifying description of dark energy, Int. J. Mod. Phys. D, 23 (2015) · Zbl 1314.83055 · doi:10.1142/S021827181443010X
[29] Battye, Richard A.; Moss, Adam, Cosmological Perturbations in Elastic Dark Energy Models, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.023005
[30] Battye, Richard A.; Pearson, Jonathan A., Effective action approach to cosmological perturbations in dark energy and modified gravity, JCAP, 07 (2012) · doi:10.1088/1475-7516/2012/07/019
[31] Battye, Richard A.; Pearson, Jonathan A., Parametrizing dark sector perturbations via equations of state, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.061301
[32] Battye, Richard A.; Pearson, Jonathan A., Massive gravity, the elasticity of space-time and perturbations in the dark sector, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.084004
[33] Battye, Richard A.; Pearson, Jonathan A., Computing model independent perturbations in dark energy and modified gravity, JCAP, 03 (2014) · doi:10.1088/1475-7516/2014/03/051
[34] Battye, Richard A.; Bolliet, Boris; Pearson, Jonathan A., f(R) gravity as a dark energy fluid, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.044026
[35] Battye, Richard A.; Pace, Francesco; Trinh, Damien, Cosmological perturbation theory in Generalized Einstein-Aether models, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.064041
[36] Battye, Richard A.; Bolliet, Boris; Pace, Francesco, Do cosmological data rule out f(ℛ) with w≠-1?, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.104070
[37] Trinh, Damien; Pace, Francesco; Battye, Richard A.; Bolliet, Boris, Cosmologically viable generalized Einstein-Aether theories, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.043515
[38] Pace, Francesco; Battye, Richard A.; Bolliet, Boris; Trinh, Damien, Dark sector evolution in Horndeski models, JCAP, 09 (2019) · Zbl 07483167 · doi:10.1088/1475-7516/2019/09/018
[39] Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo, The Effective Field Theory of Dark Energy, JCAP, 02 (2013) · Zbl 1277.83009 · doi:10.1088/1475-7516/2013/02/032
[40] Lombriser, Lucas; Taylor, Andy, Semi-dynamical perturbations of unified dark energy, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/040
[41] Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian, Phenomenology of dark energy: exploring the space of theories with future redshift surveys, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/043
[42] Sawicki, Ignacy; Bellini, Emilio, Limits of quasistatic approximation in modified-gravity cosmologies, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084061
[43] de la Cruz-Dombriz, A.; Dobado, A.; Maroto, Antonio Lopez, On the evolution of density perturbations in f(R) theories of gravity, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.123515
[44] Noller, Johannes; von Braun-Bates, Francesca; Ferreira, Pedro G., Relativistic scalar fields and the quasistatic approximation in theories of modified gravity, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.023521
[45] Pogosian, Levon; Silvestri, Alessandra, What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104014
[46] Frusciante, Noemi; Perenon, Louis, Effective field theory of dark energy: A review, Phys. Rept., 857, 1-63 (2020) · Zbl 1475.83134 · doi:10.1016/j.physrep.2020.02.004
[47] Horndeski, Gregory Walter, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363-384 (1974) · doi:10.1007/BF01807638
[48] Deffayet, C.; Gao, Xian; Steer, D. A.; Zahariade, G., From k-essence to generalised Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064039
[49] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys., 126, 511-529 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[50] Zumalacárregui, Miguel; Bellini, Emilio; Sawicki, Ignacy; Lesgourgues, Julien; Ferreira, Pedro G., hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System, JCAP, 08 (2017) · doi:10.1088/1475-7516/2017/08/019
[51] Bellini, Emilio; Sawicki, Ignacy; Zumalacárregui, Miguel, hi_class: Background Evolution, Initial Conditions and Approximation Schemes, JCAP, 02 (2020) · Zbl 1489.83029 · doi:10.1088/1475-7516/2020/02/008
[52] Zucca, Alex; Pogosian, Levon; Silvestri, Alessandra; Zhao, Gong-Bo, MGCAMB with massive neutrinos and dynamical dark energy, JCAP, 05 (2019) · Zbl 1481.83122 · doi:10.1088/1475-7516/2019/05/001
[53] Lesgourgues, Julien, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011)
[54] Blas, Diego; Lesgourgues, Julien; Tram, Thomas, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/034
[55] Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo, Weakly Broken Galileon Symmetry, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/09/007
[56] Hu, Wayne; Sawicki, Ignacy, A Parameterized Post-Friedmann Framework for Modified Gravity, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.104043
[57] Caldwell, Robert; Cooray, Asantha; Melchiorri, Alessandro, Constraints on a New Post-General Relativity Cosmological Parameter, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.023507
[58] Will, Clifford M., The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[59] Perenon, Louis; Marinoni, Christian; Piazza, Federico, Diagnostic of Horndeski Theories, JCAP, 01 (2017) · Zbl 1515.83244 · doi:10.1088/1475-7516/2017/01/035
[60] Zhao, Gong-Bo; Pogosian, Levon; Silvestri, Alessandra; Zylberberg, Joel, Searching for modified growth patterns with tomographic surveys, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.083513
[61] Hojjati, Alireza; Pogosian, Levon; Zhao, Gong-Bo, Testing gravity with CAMB and CosmoMC, JCAP, 08 (2011) · doi:10.1088/1475-7516/2011/08/005
[62] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[63] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[64] LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL Collaboration; Abbott, B. P., Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017) · doi:10.3847/2041-8213/aa920c
[65] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER Collaboration; Abbott, B. P., A gravitational-wave standard siren measurement of the Hubble constant, Nature, 551, 85-88 (2017) · doi:10.1038/nature24471
[66] Armendariz-Picon, C.; Mukhanov, Viatcheslav F.; Steinhardt, Paul J., A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett., 85, 4438-4441 (2000) · doi:10.1103/PhysRevLett.85.4438
[67] Silvestri, Alessandra; Trodden, Mark, Approaches to Understanding Cosmic Acceleration, Rept. Prog. Phys., 72 (2009) · doi:10.1088/0034-4885/72/9/096901
[68] Sotiriou, Thomas P.; Faraoni, Valerio, f(R) Theories Of Gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[69] De Felice, Antonio; Tsujikawa, Shinji, f(R) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[70] Bellini, E., Comparison of Einstein-Boltzmann solvers for testing general relativity, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023520
[71] Deffayet, Cedric; Pujolas, Oriol; Sawicki, Ignacy; Vikman, Alexander, Imperfect Dark Energy from Kinetic Gravity Braiding, JCAP, 10 (2010) · Zbl 1306.83080 · doi:10.1088/1475-7516/2010/10/026
[72] Pujolas, Oriol; Sawicki, Ignacy; Vikman, Alexander, The Imperfect Fluid behind Kinetic Gravity Braiding, JHEP, 11, 156 (2011) · Zbl 1306.83080 · doi:10.1007/JHEP11(2011)156
[73] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett., 105 (2010) · Zbl 1243.83080 · doi:10.1103/PhysRevLett.105.231302
[74] Kimura, Rampei; Yamamoto, Kazuhiro, Large Scale Structures in Kinetic Gravity Braiding Model That Can Be Unbraided, JCAP, 04 (2011) · doi:10.1088/1475-7516/2011/04/025
[75] Peirone, Simone; Benevento, Giampaolo; Frusciante, Noemi; Tsujikawa, Shinji, Cosmological data favor Galileon ghost condensate over ΛCDM, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063540
[76] Creminelli, Paolo; Vernizzi, Filippo, Dark Energy after GW170817 and GRB170817A, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251302
[77] Ezquiaga, Jose María; Zumalacárregui, Miguel, Dark Energy After GW170817: Dead Ends and the Road Ahead, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251304
[78] Baker, T.; Bellini, E.; Ferreira, P. G.; Lagos, M.; Noller, J.; Sawicki, I., Strong constraints on cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251301
[79] Linder, Eric V., No Slip Gravity, JCAP, 03 (2018) · Zbl 07458450 · doi:10.1088/1475-7516/2018/03/005
[80] Brush, Micah; Linder, Eric V.; Zumalacárregui, Miguel, No Slip CMB, JCAP, 01 (2019) · doi:10.1088/1475-7516/2019/01/029
[81] Brando, Guilherme; Falciano, Felipe T.; Linder, Eric V.; Velten, Hermano E. S., Modified gravity away from a ΛCDM background, JCAP, 11 (2019) · doi:10.1088/1475-7516/2019/11/018
[82] Crisostomi, Marco; Lewandowski, Matthew; Vernizzi, Filippo, Vainshtein regime in scalar-tensor gravity: Constraints on degenerate higher-order scalar-tensor theories, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024025
[83] Lombriser, Lucas; Taylor, Andy, Classifying Linearly Shielded Modified Gravity Models in Effective Field Theory, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.031101
[84] Lombriser, Lucas; Taylor, Andy, Breaking a Dark Degeneracy with Gravitational Waves, JCAP, 03 (2016) · doi:10.1088/1475-7516/2016/03/031
[85] Lombriser, Lucas; Lima, Nelson A., Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure, Phys. Lett. B, 765, 382-385 (2017) · Zbl 1369.83078 · doi:10.1016/j.physletb.2016.12.048
[86] Bloomfield, Jolyon K.; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott, Dark energy or modified gravity? An effective field theory approach, JCAP, 08 (2013) · doi:10.1088/1475-7516/2013/08/010
[87] Bloomfield, Jolyon, A Simplified Approach to General Scalar-Tensor Theories, JCAP, 12 (2013) · doi:10.1088/1475-7516/2013/12/044
[88] Gleyzes, Jerome; Langlois, David; Piazza, Federico; Vernizzi, Filippo, Essential Building Blocks of Dark Energy, JCAP, 08 (2013) · doi:10.1088/1475-7516/2013/08/025
[89] Perenon, Louis; Piazza, Federico; Marinoni, Christian; Hui, Lam, Phenomenology of dark energy: general features of large-scale perturbations, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/029
[90] Amendola, Luca; Bettoni, Dario; Pinho, Ana Marta; Casas, Santiago, Measuring gravity at cosmological scales, Universe, 6, 20 (2020) · doi:10.3390/universe6020020
[91] De Felice, Antonio; Kobayashi, Tsutomu; Tsujikawa, Shinji, Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations, Phys. Lett. B, 706, 123-133 (2011) · doi:10.1016/j.physletb.2011.11.028
[92] Arjona, Rubén; Cardona, Wilmar; Nesseris, Savvas, Designing Horndeski and the effective fluid approach, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063526
[93] Hu, Wayne; Sawicki, Ignacy, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.064004
[94] Noller, Johannes; Nicola, Andrina, Cosmological parameter constraints for Horndeski scalar-tensor gravity, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.103502
[95] Gleyzes, Jérôme; Langlois, David; Mancarella, Michele; Vernizzi, Filippo, Effective Theory of Dark Energy at Redshift Survey Scales, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/056
[96] Alonso, David; Bellini, Emilio; Ferreira, Pedro G.; Zumalacárregui, Miguel, Observational future of cosmological scalar-tensor theories, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.063502
[97] Bonvin, Camille; Caprini, Chiara; Durrer, Ruth, A no-go theorem for k-essence dark energy, Phys. Rev. Lett., 97 (2006) · Zbl 1228.83119 · doi:10.1103/PhysRevLett.97.081303
[98] Babichev, Eugeny; Mukhanov, Viatcheslav; Vikman, Alexander, k-Essence, superluminal propagation, causality and emergent geometry, JHEP, 02, 101 (2008) · doi:10.1088/1126-6708/2008/02/101
[99] Adams, Allan; Arkani-Hamed, Nima; Dubovsky, Sergei; Nicolis, Alberto; Rattazzi, Riccardo, Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006) · doi:10.1088/1126-6708/2006/10/014
[100] Afshordi, Niayesh; Chung, Daniel J. H.; Geshnizjani, Ghazal, Cuscuton: A Causal Field Theory with an Infinite Speed of Sound, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.083513
[101] Afshordi, Niayesh; Chung, Daniel J. H.; Doran, Michael; Geshnizjani, Ghazal, Cuscuton Cosmology: Dark Energy meets Modified Gravity, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.123509
[102] Euclid Collaboration; Blanchard, A., Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Astron. Astrophys., 642, A191 (2020) · doi:10.1051/0004-6361/202038071
[103] Mukhanov, Viatcheslav F.; Feldman, H. A.; Brandenberger, Robert H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept., 215, 203-333 (1992) · doi:10.1016/0370-1573(92)90044-Z
[104] Bardeen, James M., Gauge Invariant Cosmological Perturbations, Phys. Rev. D, 22, 1882-1905 (1980) · doi:10.1103/PhysRevD.22.1882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.