×

Dark matter production and reheating via direct inflaton couplings: collective effects. (English) Zbl 1486.83079


MSC:

83C56 Dark matter and dark energy
83E05 Geometrodynamics and the holographic principle
80A10 Classical and relativistic thermodynamics
83F05 Relativistic cosmology
35B34 Resonance in context of PDEs
81U05 \(2\)-body potential quantum scattering theory
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Linde, Andrei D., Particle physics and inflationary cosmology (1990)
[2] O. Lebedev, The Higgs portal to cosmology, Prog. Part. Nucl. Phys.120 (2021) 103881 [2104.03342]. · doi:10.1016/j.ppnp.2021.103881
[3] Kofman, Lev; Linde, Andrei D.; Starobinsky, Alexei A., Reheating after inflation, Phys. Rev. Lett., 73, 3195-3198 (1994) · doi:10.1103/PhysRevLett.73.3195
[4] Kofman, Lev; Linde, Andrei D.; Starobinsky, Alexei A., Towards the theory of reheating after inflation, Phys. Rev. D, 56, 3258-3295 (1997) · doi:10.1103/PhysRevD.56.3258
[5] Greene, Patrick B.; Kofman, Lev; Linde, Andrei D.; Starobinsky, Alexei A., Structure of resonance in preheating after inflation, Phys. Rev. D, 56, 6175-6192 (1997) · doi:10.1103/PhysRevD.56.6175
[6] Felder, Gary N.; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei D.; Tkachev, Igor, Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.011601
[7] Dufaux, Jean Francois; Felder, Gary N.; Kofman, L.; Peloso, M.; Podolsky, D., Preheating with trilinear interactions: tachyonic resonance, JCAP, 07 (2006) · doi:10.1088/1475-7516/2006/07/006
[8] Khlebnikov, S. Yu.; Tkachev, I. I., Classical decay of inflaton, Phys. Rev. Lett., 77, 219-222 (1996) · doi:10.1103/PhysRevLett.77.219
[9] Prokopec, Tomislav; Roos, Thomas G., Lattice study of classical inflaton decay, Phys. Rev. D, 55, 3768-3775 (1997) · doi:10.1103/PhysRevD.55.3768
[10] Felder, Gary N.; Tkachev, Igor, LATTICEEASY: a Program for lattice simulations of scalar fields in an expanding universe, Comput. Phys. Commun., 178, 929-932 (2008) · Zbl 1196.83005 · doi:10.1016/j.cpc.2008.02.009
[11] Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville, Observational Constraints on Decoupled Hidden Sectors, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.063506
[12] Heurtier, Lucien, The Inflaton Portal to Dark Matter, JHEP, 12, 072 (2017) · Zbl 1383.85013 · doi:10.1007/JHEP12(2017)072
[13] McDonald, John, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett., 88 (2002) · doi:10.1103/PhysRevLett.88.091304
[14] Hall, Lawrence J.; Jedamzik, Karsten; March-Russell, John; West, Stephen M., Freeze-In Production of FIMP Dark Matter, JHEP, 03, 080 (2010) · Zbl 1271.83088 · doi:10.1007/JHEP03(2010)080
[15] Lebedev, Oleg; Toma, Takashi, Relativistic Freeze-in, Phys. Lett. B, 798 (2019) · doi:10.1016/j.physletb.2019.134961
[16] Buttazzo, Dario; Degrassi, Giuseppe; Giardino, Pier Paolo; Giudice, Gian F.; Sala, Filippo; Salvio, Alberto, Investigating the near-criticality of the Higgs boson, JHEP, 12, 089 (2013) · doi:10.1007/JHEP12(2013)089
[17] Lebedev, Oleg; Westphal, Alexander, Metastable Electroweak Vacuum: implications for Inflation, Phys. Lett. B, 719, 415-418 (2013) · doi:10.1016/j.physletb.2012.12.069
[18] Ema, Yohei; Karciauskas, Mindaugas; Lebedev, Oleg; Rusak, Stanislav; Zatta, Marco, Higgs-inflaton mixing and vacuum stability, Phys. Lett. B, 789, 373-377 (2019) · doi:10.1016/j.physletb.2018.10.074
[19] Kost, Jeff; Shin, Chang Sub; Terada, Takahiro, Massless Preheating and Electroweak Vacuum Metastability (2021)
[20] Bezrukov, Fedor L.; Shaposhnikov, Mikhail, The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659, 703-706 (2008) · doi:10.1016/j.physletb.2007.11.072
[21] Garcia-Bellido, Juan; Figueroa, Daniel G.; Rubio, Javier, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.063531
[22] Linde, Andrei D., Chaotic Inflation, Phys. Lett. B, 129, 177-181 (1983) · doi:10.1016/0370-2693(83)90837-7
[23] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[24] Figueroa, Daniel G.; Torrenti, Francisco, Parametric resonance in the early Universe—a fitting analysis, JCAP, 02 (2017) · doi:10.1088/1475-7516/2017/02/001
[25] Podolsky, Dmitry I.; Felder, Gary N.; Kofman, Lev; Peloso, Marco, Equation of state and beginning of thermalization after preheating, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.023501
[26] Antusch, Stefan; Figueroa, Daniel G.; Marschall, Kenneth; Torrenti, Francisco, Energy distribution and equation of state of the early Universe: matching the end of inflation and the onset of radiation domination, Phys. Lett. B, 811 (2020) · Zbl 1475.83127 · doi:10.1016/j.physletb.2020.135888
[27] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[28] Arcadi, Giorgio; Lebedev, Oleg; Pokorski, Stefan; Toma, Takashi, Real Scalar Dark Matter: relativistic Treatment, JHEP, 08, 050 (2019) · Zbl 1421.83140 · doi:10.1007/JHEP08(2019)050
[29] Figueroa, Daniel G.; Florio, Adrien; Torrenti, Francisco; Valkenburg, Wessel, The art of simulating the early Universe — Part I, JCAP, 04 (2021) · Zbl 1503.83017 · doi:10.1088/1475-7516/2021/04/035
[30] Figueroa, Daniel G.; Florio, Adrien; Torrenti, Francisco; Valkenburg, Wessel, CosmoLattice (2021)
[31] Dolgov, A. D.; Kirilova, D. P., ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR FIELD, Sov. J. Nucl. Phys., 51, 172-177 (1990)
[32] Traschen, Jennie H.; Brandenberger, Robert H., Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D, 42, 2491-2504 (1990) · doi:10.1103/PhysRevD.42.2491
[33] Ichikawa, Kazuhide; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide, Primordial Curvature Fluctuation and Its Non-Gaussianity in Models with Modulated Reheating, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.063545
[34] Turner, Michael S., Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D, 28, 1243 (1983) · doi:10.1103/PhysRevD.28.1243
[35] Hannestad, Steen, What is the lowest possible reheating temperature?, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.043506
[36] De Romeri, Valentina; Karamitros, Dimitrios; Lebedev, Oleg; Toma, Takashi, Neutrino dark matter and the Higgs portal: improved freeze-in analysis, JHEP, 10, 137 (2020) · doi:10.1007/JHEP10(2020)137
[37] Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sheikh-Jabbari, M. M., Tachyonic Resonance Preheating in Expanding Universe, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.043524
[38] Lebedev, Oleg; Yoon, Jong-Hyun, Challenges for inflaton dark matter, Phys. Lett. B, 821 (2021) · Zbl 07414606 · doi:10.1016/j.physletb.2021.136614
[39] O. Lebedev, T. Nerdi, T. Solomko and J. Yoon, Inflaton freeze-out, to appear.
[40] Fairbairn, Malcolm; Kainulainen, Kimmo; Markkanen, Tommi; Nurmi, Sami, Despicable Dark Relics: generated by gravity with unconstrained masses, JCAP, 04 (2019) · Zbl 07486863 · doi:10.1088/1475-7516/2019/04/005
[41] Enqvist, Kari; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, Standard Model with a real singlet scalar and inflation, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/035
[42] Markkanen, Tommi; Rajantie, Arttu; Tenkanen, Tommi, Spectator Dark Matter, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.123532
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.