×

SELCIE: a tool for investigating the chameleon field of arbitrary sources. (English) Zbl 1487.83054


MSC:

83C56 Dark matter and dark energy
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
53C18 Conformal structures on manifolds
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
70H45 Constrained dynamics, Dirac’s theory of constraints
83-04 Software, source code, etc. for problems pertaining to relativity and gravitational theory

Software:

SELCIE; FEniCS; Gmsh; DOLFIN
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS Collaboration; Aad, Georges, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716, 1-29 (2012) · doi:10.1016/j.physletb.2012.08.020
[2] Supernova Search Team Collaboration; Riess, Adam G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998) · doi:10.1086/300499
[3] SDSS Collaboration; Eisenstein, Daniel J., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J., 633, 560-574 (2005) · doi:10.1086/466512
[4] Holz, Daniel E.; Hughes, Scott A., Using gravitational-wave standard sirens, Astrophys. J., 629, 15-22 (2005) · doi:10.1086/431341
[5] LIGO Scientific, Virgo Collaboration; Abbott, B. P., A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo, Astrophys. J., 909, 218 (2021) · doi:10.3847/1538-4357/abdcb7
[6] Slosar, Anže, Dark Energy and Modified Gravity (2019)
[7] Joyce, Austin; Jain, Bhuvnesh; Khoury, Justin; Trodden, Mark, Beyond the Cosmological Standard Model, Phys. Rept., 568, 1-98 (2015) · doi:10.1016/j.physrep.2014.12.002
[8] Zlatev, Ivaylo; Wang, Li-Min; Steinhardt, Paul J., Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82, 896-899 (1999) · doi:10.1103/PhysRevLett.82.896
[9] Copeland, Edmund J.; Sami, M.; Tsujikawa, Shinji, Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 1753-1936 (2006) · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[10] Khoury, Justin; Weltman, Amanda, Chameleon cosmology, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.044026
[11] Wagner, T. A.; Schlamminger, S.; Gundlach, J. H.; Adelberger, E. G., Torsion-balance tests of the weak equivalence principle, Class. Quant. Grav., 29 (2012) · doi:10.1088/0264-9381/29/18/184002
[12] Adelberger, E. G.; Heckel, Blayne R.; Nelson, A. E., Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci., 53, 77-121 (2003) · doi:10.1146/annurev.nucl.53.041002.110503
[13] Burrage, Clare; Sakstein, Jeremy, Tests of Chameleon Gravity, Living Rev. Rel., 21, 1 (2018) · Zbl 1447.81174 · doi:10.1007/s41114-018-0011-x
[14] Noller, Johannes, Cosmological constraints on dark energy in light of gravitational wave bounds, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.063524
[15] Wang, Junpu; Hui, Lam; Khoury, Justin, No-Go Theorems for Generalized Chameleon Field Theories, Phys. Rev. Lett., 109 (2012) · doi:10.1103/PhysRevLett.109.241301
[16] Hinterbichler, Kurt; Khoury, Justin, Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.231301
[17] Vainshtein, A. I., To the problem of nonvanishing gravitation mass, Phys. Lett. B, 39, 393-394 (1972) · doi:10.1016/0370-2693(72)90147-5
[18] Nicolis, Alberto; Rattazzi, Riccardo; Trincherini, Enrico, The Galileon as a local modification of gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.064036
[19] Babichev, E.; Deffayet, C.; Ziour, R., k-Mouflage gravity, Int. J. Mod. Phys. D, 18, 2147-2154 (2009) · Zbl 1183.83081 · doi:10.1142/S0218271809016107
[20] Deffayet, C.; Gao, Xian; Steer, D. A.; Zahariade, G., From k-essence to generalised Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064039
[21] Burrage, Clare; Copeland, Edmund J.; Stevenson, James, Ellipticity Weakens Chameleon Screening, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.065030
[22] Mota, David F.; Shaw, Douglas J., Evading Equivalence Principle Violations, Cosmological and other Experimental Constraints in Scalar Field Theories with a Strong Coupling to Matter, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.063501
[23] C.T. Kelley, Iterative methods for linear and nonlinear equations. SIAM1995 (1995) 1. · Zbl 0832.65046 · doi:10.1137/1.9781611970944
[24] M.S. Alnæs et al., The FEniCS project version 1.5, Arch. Num. Softw.3 (2015). · doi:10.11588/ans.2015.100.20553
[25] A. Logg et al., Automated Solution of Differential Equations by the Finite Element Method, Springer, Heidelberg Germany (2012). · Zbl 1247.65105
[26] A. Logg and G.N. Wells, Dolfin: Automated finite element computing, ACM Trans. Math. Softw.37 (2010) 1. · Zbl 1364.65254 · doi:10.1145/1731022.1731030
[27] A. Logg, G.N. Wells and J. Hake, DOLFIN: a C++/Python Finite Element Library, in Lecture Notes in Computational Science and Engineering. Vol 84: Automated Solution of Differential Equations by the Finite Element Method, Springer, Heidelberg Germany (2012), pg. 173. · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8_10
[28] C. Geuzaine and J.-F. Remacle, Gmsh, http://gmsh.info/.
[29] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Num. Meth. Eng.79 (2009) 1309. · Zbl 1176.74181 · doi:10.1002/nme.2579
[30] Braden, Jonathan; Burrage, Clare; Elder, Benjamin; Saadeh, Daniela, φenics: Vainshtein screening with the finite element method, JCAP, 03 (2021) · Zbl 1484.83080 · doi:10.1088/1475-7516/2021/03/010
[31] Burrage, Clare; Coltman, Ben; Padilla, Antonio; Saadeh, Daniela; Wilson, Toby, Massive Galileons and Vainshtein Screening, JCAP, 02 (2021) · Zbl 1484.83036 · doi:10.1088/1475-7516/2021/02/050
[32] Upadhye, Amol; Gubser, Steven S.; Khoury, Justin, Unveiling chameleons in tests of gravitational inverse-square law, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.104024
[33] Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul, Chameleon Dark Energy and Atom Interferometry, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.044051
[34] Jaffe, Matt; Haslinger, Philipp; Xu, Victoria; Hamilton, Paul; Upadhye, Amol; Elder, Benjamin, Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass, Nature Phys., 13, 938 (2017) · doi:10.1038/nphys4189
[35] Elder, Benjamin; Vardanyan, Valeri; Akrami, Yashar; Brax, Philippe; Davis, Anne-Christine; Decca, Ricardo S., Classical symmetron force in Casimir experiments, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064065
[36] Pernot-Borràs, Martin; Bergé, Joel; Brax, Philippe; Uzan, Jean-Philippe, Fifth force induced by a chameleon field on nested cylinders, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.124056
[37] Sabulsky, Dylan O.; Dutta, Indranil; Hinds, E. A.; Elder, Benjamin; Burrage, Clare; Copeland, Edmund J., Experiment to detect dark energy forces using atom interferometry, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.061102
[38] H. Langtangen and K. Mardal, Introduction to Numerical Methods for Variational Problems, Texts in Computational Science and Engineering, Springer, Heidelberg Germany (2019). · Zbl 1432.49001
[39] H.P. Langtangen and A. Logg, Solving PDEs in Python, Springer, Heidelberg Germany (2017). · Zbl 1376.65144
[40] G. Strang, Piecewise polynomials and the finite element method, Bull. Amer. Math. Soc.79 (1973) 1128. · Zbl 0285.41009
[41] Burrage, Clare; Copeland, Edmund J.; Hinds, E. A., Probing Dark Energy with Atom Interferometry, JCAP, 03 (2015) · doi:10.1088/1475-7516/2015/03/042
[42] Ettori, S.; Donnarumma, A.; Pointecouteau, E.; Reiprich, T. H.; Giodini, S.; Lovisari, L., Mass profiles of Galaxy Clusters from X-ray analysis, Space Sci. Rev., 177, 119-154 (2013) · doi:10.1007/s11214-013-9976-7
[43] Applegate, D. E., Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing, Mon. Not. Roy. Astron. Soc., 457, 1522-1534 (2016) · doi:10.1093/mnras/stw005
[44] A.R. Lyapin and R.A. Burenin, Relation between X-ray and Sunyaev-Zeldovich Galaxy Cluster Mass Measurements, Astron. Lett.45 (2019) 403. · doi:10.1134/S1063773719070053
[45] Terukina, Ayumu; Lombriser, Lucas; Yamamoto, Kazuhiro; Bacon, David; Koyama, Kazuya; Nichol, Robert C., Testing chameleon gravity with the Coma cluster, JCAP, 04 (2014) · doi:10.1088/1475-7516/2014/04/013
[46] Wilcox, Harry, The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters, Mon. Not. Roy. Astron. Soc., 452, 1171-1183 (2015) · doi:10.1093/mnras/stv1366
[47] Sakstein, Jeremy; Wilcox, Harry; Bacon, David; Koyama, Kazuya; Nichol, Robert C., Testing Gravity Using Galaxy Clusters: New Constraints on Beyond Horndeski Theories, JCAP, 07 (2016) · doi:10.1088/1475-7516/2016/07/019
[48] Koyama, Kazuya, Cosmological Tests of Modified Gravity, Rept. Prog. Phys., 79 (2016) · doi:10.1088/0034-4885/79/4/046902
[49] Burrage, Clare; Sakstein, Jeremy, Tests of Chameleon Gravity, Living Rev. Rel., 21, 1 (2018) · Zbl 1447.81174 · doi:10.1007/s41114-018-0011-x
[50] Cataneo, Matteo; Rapetti, David, Tests of gravity with galaxy clusters, Int. J. Mod. Phys. D, 27 (2018) · doi:10.1142/S0218271818480061
[51] Tamosiunas, Andrius; Bacon, David; Koyama, Kazuya; Nichol, Robert C., Testing Emergent Gravity on Galaxy Cluster Scales, JCAP, 05 (2019) · doi:10.1088/1475-7516/2019/05/053
[52] Tamosiunas, Andrius; Briddon, Chad; Burrage, Clare; Cui, Weiguang; Moss, Adam, Chameleon Screening Depends on the Shape and Structure of NFW Halos (2021)
[53] Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M., A Universal density profile from hierarchical clustering, Astrophys. J., 490, 493-508 (1997) · doi:10.1086/304888
[54] Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A., The shape dependence of chameleon screening, JCAP, 01 (2018) · Zbl 1515.83207 · doi:10.1088/1475-7516/2018/01/056
[55] Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin, Atom-interferometry constraints on dark energy, Science, 349, 849-851 (2015) · doi:10.1126/science.aaa8883
[56] Sabulsky, Dylan O.; Dutta, Indranil; Hinds, E. A.; Elder, Benjamin; Burrage, Clare; Copeland, Edmund J., Experiment to detect dark energy forces using atom interferometry, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.061102
[57] Brax, Philippe; Theroine, Camille; Pignol, Guillaume; Soldner, Torsten, Testing Chameleon Fields with Ultra Cold Neutron Bound States and Neutron Interferometry, Phys. Procedia, 51, 73-77 (2014) · doi:10.1016/j.phpro.2013.12.017
[58] Jenke, T., Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.151105
[59] Lemmel, H.; Brax, Ph.; Ivanov, A. N.; Jenke, T.; Pignol, G.; Pitschmann, M., Neutron Interferometry constrains dark energy chameleon fields, Phys. Lett. B, 743, 310-314 (2015) · doi:10.1016/j.physletb.2015.02.063
[60] Li, K., Neutron Limit on the Strongly-Coupled Chameleon Field, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.062001
[61] S. Sponar, R.I.P. Sedmik, M. Pitschmann, H. Abele and Y. Hasegawa, Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons, Nature Rev. Phys.3 (2021) 309 [2012.09048] [Inspire]. · doi:10.1038/s42254-021-00298-2
[62] Jenke, Tobias; Bosina, Joachim; Micko, Jakob; Pitschmann, Mario; Sedmik, Rene; Abele, Hartmut, Gravity resonance spectroscopy and dark energy symmetron fields: qBOUNCE experiments performed with Rabi and Ramsey spectroscopy, Eur. Phys. J. ST, 230, 1131-1136 (2021) · doi:10.1140/epjs/s11734-021-00088-y
[63] Upadhye, Amol, Dark energy fifth forces in torsion pendulum experiments, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.102003
[64] Pernot-Borràs, Martin; Bergé, Joel; Brax, Philippe; Uzan, Jean-Philippe; Métris, Gilles; Rodrigues, Manuel, Constraints on chameleon gravity from the measurement of the electrostatic stiffness of the MICROSCOPE mission accelerometers, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.064070
[65] Zhao, Yuan-Ling; Tan, Yu-Jie; Wu, Wen-Hao; Luo, Jie; Shao, Cheng-Gang, Constraining the chameleon model with the HUST-2020 torsion pendulum experiment, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.104005
[66] Decca, R. S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; Mostepanenko, V. M., Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect, Eur. Phys. J. C, 51, 963-975 (2007) · doi:10.1140/epjc/s10052-007-0346-z
[67] Almasi, Attaallah; Brax, Philippe; Iannuzzi, Davide; Sedmik, René I. P., Force sensor for chameleon and Casimir force experiments with parallel-plate configuration, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.102002
[68] Sedmik, René; Brax, Phillippe, Status Report and first Light from Cannex: Casimir Force Measurements between flat parallel Plates, J. Phys. Conf. Ser., 1138 (2018) · doi:10.1088/1742-6596/1138/1/012014
[69] Klimchitskaya, Galina L.; Mostepanenko, Vladimir M., Dark Matter Axions, Non-Newtonian Gravity and Constraints on them from Recent Measurement of the Casimir Force in the Micrometer Separation Range, Universe, 7, N9 (2021) · doi:10.3390/universe7090343
[70] Sedmik, René I. P.; Pitschmann, Mario, Next Generation Design and Prospects for Cannex, Universe, 7, 234 (2021) · doi:10.3390/universe7070234
[71] Geraci, Andrew A.; Papp, Scott B.; Kitching, John, Short-range force detection using optically-cooled levitated microspheres, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.101101
[72] Rider, Alexander D.; Moore, David C.; Blakemore, Charles P.; Louis, Maxime; Lu, Marie; Gratta, Giorgio, Search for Screened Interactions Associated with Dark Energy Below the 100 μ m Length Scale, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.101101
[73] Liu, Jian; Zhu, Ka-Di, Cavity optomechanical spectroscopy constraints chameleon dark energy scenarios, Eur. Phys. J. C, 78, 266 (2018) · doi:10.1140/epjc/s10052-018-5736-x
[74] Qvarfort, Sofia; Rätzel, Dennis; Stopyra, Stephen, Constraining modified gravity with quantum optomechanics (2021)
[75] Silvestri, Alessandra, Scalar radiation from Chameleon-shielded regions, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.251101
[76] Sakstein, Jeremy, Stellar Oscillations in Modified Gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.124013
[77] Upadhye, Amol; Steffen, Jason H., Monopole radiation in modified gravity (2013)
[78] Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy, Pulsar Constraints on Screened Modified Gravity, Class. Quant. Grav., 31 (2014) · doi:10.1088/0264-9381/31/22/225001
[79] Hagala, R.; Llinares, C.; Mota, D. F., Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.101301
[80] Ikeda, Taishi; Cardoso, Vitor; Zilhão, Miguel, Instabilities of Scalar Fields around Oscillating Stars, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.191101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.