×

Muon g-2, dark matter and the Higgs mass in no-scale supergravity. (English) Zbl 1489.83032

Summary: We discuss the phenomenology of no-scale supergravity (SUGRA), in which the universal scalar mass is zero at the high scale, focussing on the recently updated muon g-2 measurement, and including dark matter and the correct Higgs boson mass. Such no-scale supergravity scenarios arise naturally from string theory and are also inspired by the successful Starobinsky inflation, with a class of minimal models leading to a strict upper bound on the gravitino mass \(m_{3/2} < 10^3\) TeV. We perform a Monte Carlo scan over the allowed parameter space, assuming a mixture of pure gravity mediated and universal gaugino masses, using the SPheno package linked to FeynHiggs, MicrOmegas and CheckMate, displaying the results in terms of a Likelihood function. We present results for zero and non-zero trilinear soft parameters, and for different signs of gaugino masses, giving a representative set of benchmark points for each viable region of parameter space. We find that, while no-scale SUGRA can readily satisfy the dark matter and Higgs boson mass requirements, consistent with all other phenomenological constraints, the muon g-2 measurement may be accommodated only in certain regions of parameter space, close to the LHC excluded regions for light sleptons and charginos.

MSC:

83C56 Dark matter and dark energy
83E50 Supergravity
81V74 Fermionic systems in quantum theory
83E30 String and superstring theories in gravitational theory
83E05 Geometrodynamics and the holographic principle
81V25 Other elementary particle theory in quantum theory
65C05 Monte Carlo methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bennett, G. W.; Muon g-2, Phys. Rev. D, 73, Article 072003 pp. (2006)
[2] Abi, B.; Muon g-2, Phys. Rev. Lett., 126, 14, Article 141801 pp. (2021)
[3] Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Carloni Calame, C. M.; Cè, M.; Colangelo, G., Phys. Rep., 887, 1-166 (2020)
[4] Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M., Phys. Rev. Lett., 109, Article 111808 pp. (2012)
[5] Aoyama, T.; Kinoshita, T.; Nio, M., Atoms, 7, 1, 28 (2019)
[6] Czarnecki, A.; Marciano, W. J.; Vainshtein, A., Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 73, Article 119901 pp. (2006), erratum
[7] Gnendiger, C.; Stöckinger, D.; Stöckinger-Kim, H., Phys. Rev. D, 88, Article 053005 pp. (2013)
[8] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., Eur. Phys. J. C, 77, 12, 827 (2017)
[9] Keshavarzi, A.; Nomura, D.; Teubner, T., Phys. Rev. D, 97, 11, Article 114025 pp. (2018)
[10] Colangelo, G.; Hoferichter, M.; Stoffer, P., J. High Energy Phys., 02, Article 006 pp. (2019)
[11] Hoferichter, M.; Hoid, B. L.; Kubis, B., J. High Energy Phys., 08, Article 137 pp. (2019)
[12] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C, 80, 5, 410 (2020), erratum
[13] Keshavarzi, A.; Nomura, D.; Teubner, T., Phys. Rev. D, 101, 1, Article 014029 pp. (2020)
[14] Kurz, A.; Liu, T.; Marquard, P.; Steinhauser, M., Phys. Lett. B, 734, 144-147 (2014)
[15] Melnikov, K.; Vainshtein, A., Phys. Rev. D, 70, Article 113006 pp. (2004)
[16] Masjuan, P.; Sanchez-Puertas, P., Phys. Rev. D, 95, 5, Article 054026 pp. (2017)
[17] Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P., J. High Energy Phys., 04, Article 161 pp. (2017)
[18] Hoferichter, M.; Hoid, B. L.; Kubis, B.; Leupold, S.; Schneider, S. P., J. High Energy Phys., 10, Article 141 pp. (2018)
[19] Gérardin, A.; Meyer, H. B.; Nyffeler, A., Phys. Rev. D, 100, 3, Article 034520 pp. (2019)
[20] Bijnens, J.; Hermansson-Truedsson, N.; Rodríguez-Sánchez, A., Phys. Lett. B, 798, Article 134994 pp. (2019)
[21] Colangelo, G.; Hagelstein, F.; Hoferichter, M.; Laub, L.; Stoffer, P., J. High Energy Phys., 03, Article 101 pp. (2020)
[22] Blum, T.; Christ, N.; Hayakawa, M.; Izubuchi, T.; Jin, L.; Jung, C.; Lehner, C., Phys. Rev. Lett., 124, 13, Article 132002 pp. (2020)
[23] Colangelo, G.; Hoferichter, M.; Nyffeler, A.; Passera, M.; Stoffer, P., Phys. Lett. B, 735, 90-91 (2014)
[24] Czarnecki, A.; Marciano, W. J., Phys. Rev. D, 64, Article 013014 pp. (2001)
[25] Shafi, Q.; Ün, C. S.
[26] Zhao, S. M.; Su, L. H.; Dong, X. X.; Wang, T. T.; Feng, T. F.
[27] Li, Z.; Liu, G. L.; Wang, F.; Yang, J. M.; Zhang, Y.
[28] Wang, F.; Wu, L.; Xiao, Y.; Yang, J. M.; Zhang, Y., Nucl. Phys. B, 970, Article 115486 pp. (2021) · Zbl 07408607
[29] Gu, Y.; Liu, N.; Su, L.; Wang, D., Nucl. Phys. B, 969, Article 115481 pp. (2021) · Zbl 07408601
[30] Han, C.
[31] Endo, M.; Hamaguchi, K.; Iwamoto, S.; Kitahara, T., J. High Energy Phys., 04, Article 165 pp. (2020)
[32] Cao, J.; Lian, J.; Pan, Y.; Zhang, D.; Zhu, P.
[33] Athron, P.; Balázs, C.; Jacob, D. H.; Kotlarski, W.; Stöckinger, D.; Stöckinger-Kim, H.
[34] Lahanas, A. B.; Nanopoulos, D. V., Phys. Rep., 145, 1 (1987)
[35] Guth, A. H., Phys. Rev. D, 23, 347-356 (1981) · Zbl 1371.83202
[36] Linde, A. D., Phys. Lett. B, 108, 389-393 (1982)
[37] Mukhanov, V. F.; Chibisov, G. V., JETP Lett., 33, 532-535 (1981)
[38] Albrecht, A.; Steinhardt, P. J., Phys. Rev. Lett., 48, 1220-1223 (1982)
[39] Linde, A. D., Phys. Lett. B, 129, 177-181 (1983)
[40] Linde, A. D., Lect. Notes Phys., 738, 1-54 (2008) · Zbl 1172.83004
[41] Linde, A. D., Contemp. Concepts Phys., 5, 1-362 (1990)
[42] Lyth, D. H.; Riotto, A., Phys. Rep., 314, 1-146 (1999)
[43] Ade, P. A.R., Astron. Astrophys., 594, A20 (2016)
[44] Martin, J.; Ringeval, C.; Vennin, V., Phys. Dark Universe, 5-6, 75-235 (2014)
[45] Starobinsky, A. A., Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222
[46] Ellis, J. R.; Nanopoulos, D. V.; Olive, K. A.; Tamvakis, K., Phys. Lett. B, 120, 331-334 (1983)
[47] Ellis, J. R.; Nanopoulos, D. V.; Olive, K. A.; Tamvakis, K., Phys. Lett. B, 118, 335 (1982)
[48] Ellis, J. R.; Nanopoulos, D. V.; Olive, K. A.; Tamvakis, K., Nucl. Phys. B, 221, 524-548 (1983)
[49] Ellis, J. R.; Enqvist, K.; Nanopoulos, D. V.; Olive, K. A.; Srednicki, M., Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 156, 452 (1985), erratum
[50] Antusch, S.; Bastero-Gil, M.; Dutta, K.; King, S. F.; Kostka, P. M., Phys. Lett. B, 679, 428-432 (2009)
[51] Antusch, S.; Cefalà, F., J. Cosmol. Astropart. Phys., 10, Article 055 pp. (2013)
[52] Nakayama, K.; Takahashi, F.; Yanagida, T. T., Phys. Lett. B, 725, 111-114 (2013)
[53] Davis, S. C.; Postma, M., J. Cosmol. Astropart. Phys., 03, Article 015 pp. (2008)
[54] Kallosh, R.; Linde, A.; Olive, K. A.; Rube, T., Phys. Rev. D, 84, Article 083519 pp. (2011)
[55] Lyth, D. H., Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 150, 465 (1985), erratum
[56] Ellis, J.; Nanopoulos, D. V.; Olive, K. A., Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 111, 12, Article 129902 pp. (2013), erratum
[57] Ellis, J.; Nanopoulos, D. V.; Olive, K. A., J. Cosmol. Astropart. Phys., 10, Article 009 pp. (2013)
[58] Ellis, J.; Nanopoulos, D. V.; Olive, K. A., Phys. Rev. D, 89, 4, Article 043502 pp. (2014)
[59] Romao, M. C.; King, S. F., J. High Energy Phys., 07, Article 033 pp. (2017)
[60] King, S. F.; Perdomo, E., J. High Energy Phys., 05, Article 211 pp. (2019)
[61] Jeong, K. S.; Kawamura, J.; Park, C. B.
[62] Porod, W., Comput. Phys. Commun., 153, 275-315 (2003)
[63] Porod, W.; Staub, F., Comput. Phys. Commun., 183, 2458-2469 (2012)
[64] Heinemeyer, S.; Hollik, W.; Weiglein, G., Comput. Phys. Commun., 124, 76-89 (2000) · Zbl 0946.81506
[65] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 174, 577-604 (2006) · Zbl 1196.81049
[66] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 176, 367-382 (2007) · Zbl 1196.81050
[67] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 180, 747-767 (2009) · Zbl 1198.81033
[68] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Nuovo Cimento C, 033, 2, 111-116 (2010)
[69] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 185, 960-985 (2014)
[70] Drees, M.; Dreiner, H.; Schmeier, D.; Tattersall, J.; Kim, J. S., Comput. Phys. Commun., 187, 227-265 (2015)
[71] Dercks, D.; Desai, N.; Kim, J. S.; Rolbiecki, K.; Tattersall, J.; Weber, T., Comput. Phys. Commun., 221, 383-418 (2017)
[72] Aad, G., Phys. Lett. B, 716, 1-29 (2012)
[73] Chatrchyan, S., Phys. Lett. B, 716, 30-61 (2012)
[74] Evans, J. L.; Nagata, N.; Olive, K. A., Eur. Phys. J. C, 79, 6, 490 (2019)
[75] Jeong, K. S.; Kawamura, J.; Park, C. B.
[76] Ellis, J. R.; Olive, K. A.; Santoso, Y.; Spanos, V. C., Phys. Rev. D, 70, Article 055005 pp. (2004)
[77] Hastings, W. K., Biometrika, 57, 97-109 (1970) · Zbl 0219.65008
[78] Ellis, J.; Evans, J. L.; Nagata, N.; Olive, K. A.; Velasco-Sevilla, L., Eur. Phys. J. C, 81, 2, 120 (2021)
[79] Bernigaud, J.; Forster, A. K.; Herrmann, B.; King, S. F.; Porod, W.; Rowley, S. J.
[80] Frederix, R.; Frixione, S.; Hirschi, V.; Pagani, D.; Shao, H. S.; Zaro, M., J. High Energy Phys., 07, Article 185 pp. (2018)
[81] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H. S.; Stelzer, T.; Torrielli, P.; Zaro, M., J. High Energy Phys., 07, Article 079 pp. (2014) · Zbl 1402.81011
[82] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., Comput. Phys. Commun., 191, 159-177 (2015) · Zbl 1344.81029
[83] Sjostrand, T.; Mrenna, S.; Skands, P. Z., Comput. Phys. Commun., 178, 852-867 (2008) · Zbl 1196.81038
[84] de Favereau, J., J. High Energy Phys., 02, Article 057 pp. (2014)
[85] Cacciari, M.; Salam, G. P., Phys. Lett. B, 641, 57-61 (2006)
[86] Cacciari, M.; Salam, G. P.; Soyez, G., Eur. Phys. J. C, 72, 1896 (2012) · Zbl 1393.81007
[87] Cacciari, M.; Salam, G. P.; Soyez, G., J. High Energy Phys., 04, Article 063 pp. (2008) · Zbl 1369.81100
[88] Read, A. L., J. Phys. G, 28, 2693-2704 (2002)
[89] Aaboud, M., J. High Energy Phys., 01, Article 126 pp. (2018)
[90] Aad, G., J. High Energy Phys., 02, Article 143 pp. (2021)
[91] Sirunyan, A. M., J. High Energy Phys., 03, Article 166 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.