×

Correlators of heavy-light quark currents in HQET: OPE at three loops. (English) Zbl 1489.81062

Summary: Coefficient functions of the operator product expansion of correlators of HQET heavy-light quark currents are calculated up to operators of dimension 4 up to 3 loops.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81R12 Groups and algebras in quantum theory and relations with integrable systems
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
32U40 Currents

Software:

FIRE; LiteRed; FORM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Eichten, E.; Hill, B. R., An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B, 234, 511-516 (1990)
[2] Neubert, M., Heavy quark symmetry, Phys. Rep., 245, 259-396 (1994)
[3] Manohar, A. V.; Wise, M. B., Heavy Quark Physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., vol. 10 (2000), Cambridge University Press: Cambridge University Press Cambridge
[4] Grozin, A. G., Heavy Quark Effective Theory, Springer Tracts Mod. Phys., vol. 201 (2004), Springer: Springer Berlin
[5] Broadhurst, D. J.; Grozin, A. G., Matching QCD and HQET heavy-light currents at two loops and beyond, Phys. Rev. D, 52, 4082-4098 (1995)
[6] Grozin, A. G., Decoupling of heavy quark loops in light-light and heavy-light quark currents, Phys. Lett. B, 445, 165-167 (1998)
[7] Bekavac, S.; Grozin, A. G.; Marquard, P.; Piclum, J. H.; Seidel, D.; Steinhauser, M., Matching QCD and HQET heavy-light currents at three loops, Nucl. Phys. B, 833, 46-63 (2010) · Zbl 1204.81165
[8] Ji, X.-D.; Musolf, M., Subleading logarithmic mass dependence in heavy meson form-factors, Phys. Lett. B, 257, 409-413 (1991)
[9] Broadhurst, D. J.; Grozin, A. G., Two loop renormalization of the effective field theory of a static quark, Phys. Lett. B, 267, 105-110 (1991)
[10] Giménez, V., Two loop calculation of the anomalous dimension of the axial current with static heavy quarks, Nucl. Phys. B, 375, 582-622 (1992)
[11] Chetyrkin, K. G.; Grozin, A. G., Three loop anomalous dimension of the heavy-light quark current in HQET, Nucl. Phys. B, 666, 289-302 (2003)
[12] Broadhurst, D. J.; Grozin, A. G., Operator product expansion in static quark effective field theory: large perturbative correction, Phys. Lett. B, 274, 421-427 (1992)
[13] Bagan, E.; Ball, P.; Braun, V. M.; Dosch, H. G., QCD sum rules in the effective heavy quark theory, Phys. Lett. B, 278, 457-464 (1992)
[14] Neubert, M., Heavy meson form-factors from QCD sum rules, Phys. Rev. D, 45, 2451-2466 (1992)
[15] Grozin, A. G., Methods of calculation of higher power corrections in QCD, Int. J. Mod. Phys. A, 10, 3497-3529 (1995)
[16] Czarnecki, A.; Melnikov, K., Threshold expansion for heavy light systems and flavor off diagonal current-current correlators, Phys. Rev. D, 66, Article 011502 pp. (2002)
[17] Grozin, A. G.; Smirnov, A. V.; Smirnov, V. A., Decoupling of heavy quarks in HQET, J. High Energy Phys., 11, Article 022 pp. (2006)
[18] Isgur, N.; Wise, M. B., Weak transition form-factors between heavy mesons, Phys. Lett. B, 237, 527-530 (1990)
[19] Georgi, H.; Wise, M. B., Superflavor symmetry for heavy particles, Phys. Lett. B, 243, 279-283 (1990)
[20] Braun, V. M.; Chetyrkin, K. G.; Kniehl, B. A., Renormalization of parton quasi-distributions beyond the leading order: spacelike vs. timelike, J. High Energy Phys., 07, Article 161 pp. (2020)
[21] Lee, R. N., Presenting LiteRed: a tool for the Loop InTEgrals REDuction (December 2012)
[22] Lee, R. N., LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser., 523, Article 012059 pp. (2014)
[23] Grozin, A. G., Calculating three loop diagrams in heavy quark effective theory with integration by parts recurrence relations, J. High Energy Phys., 03, Article 013 pp. (2000)
[24] Smirnov, A. V.; Chuharev, F. S., FIRE6: Feynman Integral REduction with modular arithmetic (2019)
[25] Nogueira, P., Automatic Feynman graph generation, J. Comput. Phys., 105, 279-289 (1993) · Zbl 0782.68091
[26] Vermaseren, J. A.M., New features of FORM (2000)
[27] Van Ritbergen, T.; Schellekens, A. N.; Vermaseren, J. A.M., Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A, 14, 1, 41-96 (1999) · Zbl 0924.22017
[28] Beneke, M.; Braun, V. M., Heavy quark effective theory beyond perturbation theory: renormalons, the pole mass and the residual mass term, Nucl. Phys. B, 426, 301-343 (1994)
[29] Grozin, A. G., Lectures on multiloop calculations, Int. J. Mod. Phys. A, 19, 473-520 (2004) · Zbl 1080.81565
[30] Grozin, A. G., Higher radiative corrections in HQET, (Ali, A.; Ivanov, M., Helmholz International Summer School on Heavy Quark Physics, Verlag Deutsches Elektronen-Synchrotron (2008)), 55-88, DESY-PROC-2009-07
[31] Gorishnii, S. G.; Larin, S. A.; Tkachov, F. V., The algorithm for OPE coefficient functions in the MS scheme, Phys. Lett. B, 124, 217-220 (1983)
[32] Gorishnii, S. G.; Larin, S. A., Coefficient functions of asymptotic operator expansions in minimal subtraction scheme, Nucl. Phys. B, 283, 452-476 (1987)
[33] Broadhurst, D. J.; Generalis, S. C., Can mass singularities be minimally subtracted?, Phys. Lett. B, 142, 75-79 (1984)
[34] Broadhurst, D. J.; Generalis, S. C., Dimension eight contributions to light quark QCD sum rules, Phys. Lett. B, 165, 175-180 (1985)
[35] Spiridonov, V. P.; Chetyrkin, K. G., Nonleading mass corrections and renormalization of the operators \(m \overline{\psi} \psi\) and \(G_{\mu \nu}^2\), Sov. J. Nucl. Phys.. Sov. J. Nucl. Phys., Yad. Fiz., 47, 818-826 (1988)
[36] Chetyrkin, K. G.; Kühn, J. H., Quartic mass corrections to \(R_{\text{had}} \), Nucl. Phys. B, 432, 337-350 (1994)
[37] Chetyrkin, K. G.; Zoller, M. F., Leading QCD-induced four-loop contributions to the β-function of the Higgs self-coupling in the SM and vacuum stability, J. High Energy Phys., 06, Article 175 pp. (2016)
[38] Baikov, P. A.; Chetyrkin, K. G., QCD vacuum energy in 5 loops, (PoS RADCOR2017 (2018)), Article 025 pp.
[39] Novikov, V. A.; Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., Calculations in external fields in quantum chromodynamics. Technical review, Fortschr. Phys., 32, 585-622 (1984)
[40] Collins, J. C.; Duncan, A.; Joglekar, S. D., Trace and dilatation anomalies in gauge theories, Phys. Rev. D, 16, 438-449 (1977)
[41] Nielsen, N. K., The energy momentum tensor in a nonabelian quark gluon theory, Nucl. Phys. B, 120, 212-220 (1977)
[42] Spiridonov, V. P., Anomalous dimension of \(G_{\mu \nu}^2\) and β function (1984), Tech. Rep. P-0378, IYaI
[43] Mikhailov, S. V.; Radyushkin, A. V., Nonlocal condensates and QCD sum rules for pion wave function, JETP Lett.. JETP Lett., Pis’ma Zh. Eksp. Teor. Fiz., 43, 551 (1986)
[44] Grozin, A. G.; Pinelis, Y. F., Contribution of higher gluon condensates to the light quark vacuum polarization, Z. Phys. C, 33, 419-425 (1987)
[45] Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., QCD and resonance physics. Theoretical foundations, Nucl. Phys. B, 147, 385-447 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.