×

An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. (English) Zbl 07506159

Summary: An efficient lattice Boltzmann (LB) model relying on a hybrid recursive regularization (HRR) collision operator on D3Q19 stencil is proposed for the simulation of three-dimensional high-speed compressible flows in both subsonic and supersonic regimes. An improved thermal equilibrium distribution function on D3Q19 lattice is derived to reduce the complexity of correcting terms. A simple shock capturing scheme and an upwind biased discretization of correction terms are implemented for supersonic flows with shocks. Mass and momentum equations are recovered by an efficient streaming, collision and forcing process on D3Q19 lattice. Then a non-conservative formulation of the entropy evolution equation is used, that is solved using a finite volume method. The proposed method is assessed considering the simulation of i) 2D isentropic vortex convection, ii) 3D non-isothermal acoustic pulse, iii) 2D supersonic flow over a bump, iv) 3D shock explosion in a box, v) 2D vortex interaction with shock wave, vi) 2D laminar flows over a flat plate at Ma of 0.5, 1.0 and 1.5.

MSC:

76-XX Fluid mechanics
80-XX Classical thermodynamics, heat transfer

Software:

AUSMPW+
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Mohamad, A. A., Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (2011), Springer Science & Business Media · Zbl 1247.80003
[2] Guo, Z.; Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, vol. 3 (2013), World Scientific · Zbl 1278.76001
[3] Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q., A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications, Int. J. Heat Mass Transf., 76, 210-236 (2014)
[4] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The Lattice Boltzmann Method, vol. 10, 978 (2017), Springer International Publishing · Zbl 1362.76001
[5] Succi, S.; Amati, G.; Bernaschi, M.; Falcucci, G.; Lauricella, M.; Montessori, A., Towards exascale lattice Boltzmann computing, Comput. Fluids, 181, 107-115 (2019) · Zbl 1410.76380
[6] Feng, Y.; Boivin, P.; Jacob, J.; Sagaut, P., Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows, Phys. Rev. E, 100, 2, Article 023304 pp. (2019)
[7] Shi, W.; Shyy, W.; Mei, R., Finite-difference-based lattice Boltzmann method for inviscid compressible flows, Numer. Heat Transf., Part B, Fundam., 40, 1, 1-21 (2001)
[8] Kataoka, T.; Tsutahara, M., Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 69, 3, Article 035701 pp. (2004)
[9] Li, Q.; He, Y.; Wang, Y.; Tao, W., Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations, Phys. Rev. E, 76, 5, Article 056705 pp. (2007)
[10] So, R.; Leung, R.; Fu, S., Modeled Boltzmann equation and its application to shock-capturing simulation, AIAA J., 46, 12, 3038-3048 (2008)
[11] Guo, Z.; Wang, R.; Xu, K., Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case, Phys. Rev. E, 91, 3, Article 033313 pp. (2015)
[12] Yang, L.; Shu, C.; Wu, J., A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows, Adv. Appl. Math. Mech., 8, 6, 887-910 (2016) · Zbl 1488.76096
[13] Xu, K., A gas-kinetic bgk scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171, 1, 289-335 (2001) · Zbl 1058.76056
[14] Xu, K.; Huang, J.-C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229, 20, 7747-7764 (2010) · Zbl 1276.76057
[15] Yang, L.; Shu, C.; Yang, W.; Wu, J., An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows, J. Comput. Phys., 396, 738-760 (2019) · Zbl 1452.76214
[16] Liu, C.; Zhu, Y.; Xu, K., Unified gas-kinetic wave-particle methods i: continuum and rarefied gas flow, J. Comput. Phys., 401, Article 108977 pp. (2020) · Zbl 1453.76167
[17] Dellar, P. J., An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., 65, 129-141 (2013) · Zbl 1268.76044
[18] Alexander, F. J.; Chen, H.; Chen, S.; Doolen, G., Lattice Boltzmann model for compressible fluids, Phys. Rev. A, 46, 4, 1967 (1992)
[19] Shan, X. W.; Yuan, X. F.; Chen, H. D., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413-441 (2006) · Zbl 1097.76061
[20] Scagliarini, A.; Biferale, L.; Sbragaglia, M.; Sugiyama, K.; Toschi, F., Lattice Boltzmann methods for thermal flows: continuum limit and applications to compressible Rayleigh-Taylor systems, Phys. Fluids, 22, 5, Article 055101 pp. (2010) · Zbl 1190.76109
[21] Philippi, P.; Siebert, D.; Hegele, L.; Mattila, K., High-order lattice-Boltzmann, J. Braz. Soc. Mech. Sci. Eng., 38, 5, 1401-1419 (2016)
[22] Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V., Entropic lattice Boltzmann model for compressible flows, Phys. Rev. E, 92, 6, Article 061301 pp. (2015)
[23] Shan, X., Central-moment-based galilean-invariant multiple-relaxation-time collision model, Phys. Rev. E, 100, Article 043308 pp. (2019)
[24] Frapolli, N., Entropic lattice Boltzmann models for thermal and compressible flows (2017), ETH: ETH Zurich, Ph.D. thesis
[25] Coreixas, C.; Wissocq, G.; Puigt, G.; Boussuge, J.; Sagaut, P., Recursive regularization step for high-order lattice Boltzmann methods, Phys. Rev. E, 96, Article 033306 pp. (2017)
[26] Mattila, K. K.; Philippi, P. C.; Hegele, L. A., High-order regularization in lattice-Boltzmann equations, Phys. Fluids, 29, 4, Article 046103 pp. (2017)
[27] Atif, M.; Namburi, M.; Ansumali, S., High-order lattice-Boltzmann model for thermodynamics, Phys. Rev. E, 98, Article 053311 pp. (2018)
[28] Qiu, R.; Chen, R.; Zhu, C.; You, Y., A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows, Int. J. Mod. Phys. B, 32, Article 1850157 pp. (2018) · Zbl 1423.76367
[29] Gan, Y.; Xu, A.; Zhang, G.; Zhang, Y.; Succi, S., Discrete Boltzmann trans-scale modeling for high-speed compressible flows, Phys. Rev. E, 97, Article 053312 pp. (2018)
[30] Fei, L.; Luo, K. H., Cascaded lattice Boltzmann method for thermal flows on standard lattices, Int. J. Therm. Sci., 132, 368-377 (2018)
[31] Feng, Y.; Sagaut, P.; Tao, W. Q., A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices, Comput. Fluids, 131, 45-55 (2016) · Zbl 1390.76713
[32] Saadat, M. H.; Bösch, F.; Karlin, I. V., Lattice Boltzmann model for compressible flows on standard lattices: variable Prandtl number and adiabatic exponent, Phys. Rev. E, 99, 1, Article 013306 pp. (2019)
[33] Buick, J.; Cosgrove, J., Investigation of a lattice Boltzmann model with a variable speed of sound, J. Phys. A, Math. Gen., 39, 44, Article 13807 pp. (2006) · Zbl 1104.76069
[34] Nie, X.; Shan, X.; Chen, H., Lattice Boltzmann/finite-difference hybrid simulation of transonic flow, AIAA Pap., 139, 2009 (2009)
[35] Romani, G.; Casalino, D., Rotorcraft blade-vortex interaction noise prediction using the lattice-Boltzmann method, Aerosp. Sci. Technol., 88, 147-157 (2019)
[36] Feng, Y.; Sagaut, P.; Tao, W., A three dimensional lattice model for thermal compressible flow on standard lattices, J. Comput. Phys., 303, 514-529 (2015) · Zbl 1349.76680
[37] Jacob, J.; Malaspinas, O.; Sagaut, P., A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation, J. Turbul., 19, 11-12, 1051-1076 (2018)
[38] Feng, Y.-L.; Guo, S.-L.; Tao, W.-Q.; Sagaut, P., Regularized thermal lattice Boltzmann method for natural convection with large temperature differences, Int. J. Heat Mass Transf., 125, 1379-1391 (2018)
[39] Feng, Y.; Tayyab, M.; Boivin, P., A lattice-Boltzmann model for low-Mach reactive flows, Combust. Flame, 196, 249-254 (2018)
[40] Feng, Y.; Boivin, P.; Jacob, J.; Sagaut, P., Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows, J. Comput. Phys., 394, 82-99 (2019) · Zbl 1452.76173
[41] Renard, F.; Feng, Y.; Boussuge, J.; Sagaut, P., Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows, Comput. Fluids (2020), submitted for publication
[42] Yu, H.; Zhao, K., Lattice Boltzmann method for compressible flows with high Mach numbers, Phys. Rev. E, 61, 4, 3867 (2000)
[43] Yan, G.; Zhang, J.; Liu, Y.; Dong, Y., A multi-energy-level lattice Boltzmann model for the compressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 55, 1, 41-56 (2007) · Zbl 1119.76049
[44] Prasianakis, N. I.; Karlin, I. V., Lattice Boltzmann method for simulation of compressible flows on standard lattices, Phys. Rev. E, 78, 1, Article 016704 pp. (2008)
[45] Li, Q.; Luo, K.; He, Y.; Tao, W., Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices, Phys. Rev. E, 85, Article 016710 pp. (2012)
[46] Li, X.; Shi, Y.; Shan, X., Temperature-scaled collision process for the high-order lattice Boltzmann model, Phys. Rev. E, 100, 1, Article 013301 pp. (2019)
[47] Saadat, M. H.; Bösch, F.; Karlin, I. V., Lattice Boltzmann model for compressible flows on standard lattices: variable Prandtl number and adiabatic exponent, Phys. Rev. E, 99, 1, Article 013306 pp. (2019)
[48] Chen, Y.; Ohashi, H.; Akiyama, M., Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations, Phys. Rev. E, 50, 4, 2776 (1994)
[49] McNamara, G. R.; Garcia, A. L.; Alder, B. J., A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 87, 5-6, 1111-1121 (1997) · Zbl 0939.82038
[50] Li, Y.; Jammalamadaka, A.; Gopalakrishnan, P.; Zhang, R.; Chen, H., Computation of high-subsonic and transonic flows by a lattice Boltzmann method, (54th AIAA Aerospace Sciences Meeting (2016)), 0043
[51] Shan, X., The mathematical structure of the lattices of the lattice Boltzmann method, J. Comput. Sci., 17, 475-481 (2016)
[52] Fares, E.; Wessels, M.; Zhang, R.; Sun, C.; Gopalaswamy, N.; Roberts, P.; Hoch, J.; Chen, H., Validation of a lattice-Boltzmann approach for transonic and supersonic flow simulations, (52nd Aerospace Sciences Meeting (2014)), 0952
[53] Singh, D.; Konig, B.; Fares, E.; Murayama, M.; Ito, Y.; Yokokawa, Y.; Yamamoto, K., Lattice-Boltzmann simulations of the jaxa jsm high-lift configuration in a wind tunnel, (AIAA Scitech 2019 Forum (2019)), 1333
[54] Latt, J.; Coreixas, C.; Beny, J.; Parmigiani, A., Efficient supersonic flows through high-order guided equilibrium with lattice Boltzmann (2019), arXiv preprint
[55] Yang, B.; Flusser, J.; Suk, T., 3d rotation invariants of Gaussian-Hermite moments, Pattern Recognit. Lett., 54, 18-26 (2015)
[56] Malaspinas, O., Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization, arXiv preprint
[57] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 2, 531-545 (2004) · Zbl 1061.76044
[58] Levasseur, V.; Sagaut, P.; Chalot, F.; Davroux, A., An entropy-variable-based vms/gls method for the simulation of compressible flows on unstructured grids, Comput. Methods Appl. Mech. Eng., 195, 9-12, 1154-1179 (2006) · Zbl 1115.76050
[59] Kuya, Y.; Totani, K.; Kawai, S., Kinetic energy and entropy preserving schemes for compressible flows by split convective forms, J. Comput. Phys., 375, 823-853 (2018) · Zbl 1416.76182
[60] Coppola, G.; Capuano, F.; Pirozzoli, S.; de Luca, L., Numerically stable formulations of convective terms for turbulent compressible flows, J. Comput. Phys., 382, 86-104 (2019) · Zbl 1451.76081
[61] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 188-208 (2008) · Zbl 1133.76031
[62] Jameson, A., The construction of discretely conservative finite volume schemes that also globally conserve energy of entropy, J. Sci. Comput., 34, 152-187 (2008) · Zbl 1133.76030
[63] Abe, Y.; Morinaka, I.; Haga, T.; Nonomura, T.; Shibita, H.; Miyaji, K., Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms, J. Comput. Phys., 353, 193-227 (2018) · Zbl 1380.76091
[64] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 1252-1286 (2013) · Zbl 1373.76121
[65] Ma, P.; Lv, Y.; Ihme, M., An entropy-stable hybrid scheme for simulations of trans-critical real-fluid flows, J. Comput. Phys., 340, 330-357 (2017) · Zbl 1376.76033
[66] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310
[67] Frapolli, N.; Chikatamarla, S.; Karlin, I., Entropic lattice Boltzmann simulation of thermal convective turbulence, Comput. Fluids, 175, 2-19 (2018) · Zbl 1410.76353
[68] Frapolli, N.; Chikatamarla, S.; Karlin, I., Multispeed entropic lattice Boltzmann model for thermal flows, Phys. Rev. E, 90, 4, Article 043306 pp. (2014)
[69] Prasianakis, N. I.; Chikatamarla, S. S.; Karlin, I. V.; Ansumali, S.; Boulouchos, K., Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul., 72, 179-183 (2006) · Zbl 1116.76418
[70] Qian, Y.-H.; Zhou, Y., Higher-order dynamics in lattice-based models using the Chapman-Enskog method, Phys. Rev. E, 61, 2, 2103 (2000)
[71] Kim, K. H.; Kim, C.; Rho, O.-H., Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme, J. Comput. Phys., 174, 1, 38-80 (2001) · Zbl 1106.76421
[72] Hirsch, C., Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics (2007), Elsevier
[73] Jameson, A., Origins and further development of the Jameson-Schmidt-Turkel scheme, AIAA J., 1487-1510 (2017)
[74] Morinishi, Y.; Lund, T.; Vasilyev, O.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flows, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[75] Droge, M.; Verstappen, R., A new symmetry-preserving Cartesian-grid for computing flow pas arbitrarily shaped objects, Int. J. Numer. Methods Fluids, 47, 979-985 (2005) · Zbl 1134.76039
[76] Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229, 1276-1300 (2010)
[77] Pirozzoli, S., Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates, J. Comput. Phys., 230, 2997-3014 (2011) · Zbl 1316.76064
[78] Morinishi, Y.; Koga, K., Skew-symmetric convection form and secondary conservative finite difference methods for moving grids, J. Comput. Phys., 257, 1081-1112 (2014) · Zbl 1352.65255
[79] Capuano, F.; Coppola, G.; Balarac, G.; de Luca, L., Energy preserving turbulent simulations at a reduced computational cost, J. Comput. Phys., 298, 480-494 (2015) · Zbl 1349.76051
[80] Capuano, F.; Coppola, G.; de Luca, L., An efficient time advancing strategy for energy-preserving simulations, J. Comput. Phys., 295, 209-229 (2015) · Zbl 1349.65394
[81] Latt, J.; Chopard, B., Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., 72, 165-168 (2006) · Zbl 1102.76056
[82] (2019), ProLB: high-fidelity CFD in exceptional turnaround times
[83] Marié, S.; Ricot, D.; Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228, 4, 1056-1070 (2009) · Zbl 1330.76115
[84] Dumbser, M.; Toro, E. F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 3, 635-671 (2011) · Zbl 1373.76125
[85] Tavelli, M.; Dumbser, M., A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376 (2017) · Zbl 1376.76028
[86] Djavareshkian, M. H.; Jahdi, M. A., Shock-capturing method using characteristic-based dissipation filters in pressure-based algorithm, Acta Mech., 209, 1-2, 99 (2010) · Zbl 1381.76215
[87] (2019), Amroc-blockstructured adaptive mesh refinement in object-oriented c++
[88] Inoue, O.; Hattori, Y., Sound generation by Shock-Vortex interactions, J. Fluid Mech., 380, 81-116 (1999) · Zbl 0953.76080
[89] Chapman, D. R., Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature, J. Aeronaut. Sci., 16, 9, 547-565 (1949)
[90] De Grazia, D.; Moxey, D.; Sherwin, S.; Kravtsova, M.; Ruban, A., Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime, Phys. Rev. Fluids, 3, 2, Article 024101 pp. (2018)
[91] White, F. M.; Corfield, I., Viscous Fluid Flow, vol. 3 (2006), McGraw-Hill: McGraw-Hill New York
[92] Hou, T. Y.; Lefloch, P. G., Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comput., 62, 206, 497-530 (1994) · Zbl 0809.65102
[93] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 8, 2759-2763 (2010) · Zbl 1188.65134
[94] Abgrall, R.; Bacigaluppi, P.; Tokareva, S., A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Comput. Fluids, 169, 10-22 (2018) · Zbl 1410.76277
[95] Gastaldo, L.; Herbin, R.; Latché, J.-C.; Therme, N., A MUSCL-type segregated – explicit staggered scheme for the Euler equations, Comput. Fluids, 175, 91-110 (2018) · Zbl 1410.76226
[96] Xu, K., Regularization of the Chapman-Enskog expansion and its description of shock structure, Phys. Fluids, 14, 4, L17-L20 (2002) · Zbl 1185.76405
[97] Struchtrup, H.; Torrilhon, M., Regularization of Grad’s 13 moment equations: derivation and linear analysis, Phys. Fluids, 15, 9, 2668-2680 (2003) · Zbl 1186.76504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.