×

A pressure-based solver for low-Mach number flow using a discontinuous Galerkin method. (English) Zbl 07508484

Summary: Over the past two decades, there has been much development in discontinuous Galerkin methods for incompressible flows and for compressible flows with a positive Mach number, but almost no attention has been paid to variable-density flows at low speeds. This paper presents a pressure-based discontinuous Galerkin method for flow in the low-Mach number limit. We use a variable-density pressure correction method, which is simplified by solving for the mass flux instead of the velocity. The fluid properties do not depend significantly on the pressure, but may vary strongly in space and time as a function of the temperature.
We pay particular attention to the temporal discretization of the enthalpy equation, and show that the specific enthalpy needs to be ‘offset’ with a constant in order for the temporal finite difference method to be stable. We also show how one can solve for the specific enthalpy from the conservative enthalpy transport equation without needing a predictor step for the density. These findings do not depend on the spatial discretization. A series of manufactured solutions with variable fluid properties demonstrate full second-order temporal accuracy, without iterating the transport equations within a time step. We also simulate a Von Kármán vortex street in the wake of a heated circular cylinder, and show good agreement between our numerical results and experimental data.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Axelsson, O.; He, X.; Neytcheva, M., Numerical solution of the time-dependent Navier-Stokes equation for variable density-variable viscosity. Part I, Math. Model. Anal., 20, 2, 232-260 (2015) · Zbl 1488.76084
[2] Balay, Satish; Gropp, William D.; Curfman McInnes, Lois; Smith, Barry F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[3] Balay, Satish; Abhyankar, Shrirang; Adams, Mark F.; Brown, Jed; Brune, Peter; Buschelman, Kris; Dalcin, Lisandro; Eijkhout, Victor; Gropp, William D.; Kaushik, Dinesh; Knepley, Matthew G.; May, Dave A.; Curfman McInnes, Lois; Tran Mills, Richard; Munson, Todd; Rupp, Karl; Sanan, Patrick; Smith, Barry F.; Zampini, Stefano; Zhang, Hong; Zhang, Hong, PETSc users manual (2018), Argonne National Laboratory, Technical Report ANL-95/11 - Revision 3.9
[4] Barney, R.; Nourgaliev, R.; Delplanque, J. P.; McCallen, R., Fully-implicit, high-order, reconstructed discontinuous Galerkin method for supercritical fluid flows, (Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C). Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), Portland, OR, USA (2019)), 377-386
[5] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 2, 794-815 (2006) · Zbl 1158.76313
[6] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput. Fluids, 118, 305-320 (2015) · Zbl 1390.76833
[7] Bell, Ian H.; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp, Ind. Eng. Chem. Res., 53, 6, 2498-2508 (Feb. 2014)
[8] Botti, Lorenzo; Di Pietro, Daniele A., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 3, 572-585 (2011) · Zbl 1283.76030
[9] Cliffe, K. Andrew; Hall, Edward J. C.; Houston, Paul, Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows, SIAM J. Sci. Comput., 31, 6, 4607-4632 (Jan. 2010) · Zbl 1211.37094
[10] Cockburn, Bernardo; Kanschat, Guido; Schötzau, Dominik, An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput., 40, 1, 188-210 (2009) · Zbl 1203.76080
[11] Collis, S. Scott, Discontinuous Galerkin methods for turbulence simulation, (Summer Program 2002, Center for Turbulence Research (2002)), 155-167
[12] Crivellini, Andrea; D’Alessandro, Valerio; Bassi, Francesco, A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, J. Comput. Phys., 241, 388-415 (2013) · Zbl 1349.76194
[13] Ross Ethier, C.; Steinman, D. A., Exact fully 3D Navier-Stokes Solutions for Benchmarking, Int. J. Numer. Methods Fluids, 19, 369-375 (March 1994) · Zbl 0814.76031
[14] Fabian, Foll; Pandey, Sandeep; Chu, Xu; Munz, Claus-Dieter; Laurien, Eckart; Weigand, Bernhard, High-fidelity direct numerical simulation of supercritical channel flow using discontinuous Galerkin spectral element method, (High Performance Computing in Science and Engineering (2019), Springer: Springer Cham), 275-289
[15] Ferrer, E.; Moxey, D.; Willden, R. H.J.; Sherwin, S. J., Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations, Commun. Comput. Phys., 16, 3, 817-840 (Sep. 2014)
[16] Geuzaine, Christophe; Remacle, J. F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[17] Guermond, J.-L.; Salgado, Abner, A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228, 8, 2834-2846 (may 2009) · Zbl 1159.76028
[18] Hartmann, Ralf, Numerical analysis of higher order discontinuous Galerkin finite element methods (2008)
[19] Hennink, Aldo, Finite difference methods for the non-linear enthalpy equation (2019)
[20] Hillewaert, Koen, Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries (2013), Université catholique de Louvain, PhD thesis
[21] Kanschat, Guido, Discontinuous Galerkin Methods for Viscous Incompressible Flow (2007), Teubner Research: Deutscher Universitäts-Verlag: Teubner Research: Deutscher Universitäts-Verlag Wiesbaden
[22] Karypis, George; Kumar, Vipin, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[23] Klaij, C. M.; van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 2, 589-611 (2006) · Zbl 1099.76035
[24] Klein, B.; Müller, B.; Kummer, F.; Oberlack, M., A high-order discontinuous Galerkin solver for low Mach number flows, Int. J. Numer. Methods Fluids, 81, 489-520 (2016)
[25] Klein, Benedikt, A high-order Discontinuous Galerkin solver for incompressible and low-Mach number flows (2015), Technische Universität: Technische Universität Darmstadt, PhD thesis
[26] Krank, Benjamin; Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin, A high-order semi-explicit discontinuous Galerkin solver for 3d incompressible flow with application to dns and les of turbulent channel flow, J. Comput. Phys., 348, 634-659 (2017) · Zbl 1380.76040
[27] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81 (Oct. 2015) · Zbl 1352.65396
[28] Najm, Habib N.; Wyckoff, Peter S.; Knio, Omar M., A semi-implicit numerical scheme for reacting flow, I: stiff chemistry, J. Comput. Phys., 143, 2, 381-402 (Jul. 1998) · Zbl 0936.76064
[29] Nemati, H., Direct numerical simulation of turbulent heat transfer to fluids at supercritical pressures (2016), TU Delft, doctoral thesis
[30] Nicoud, F., Conservative high-order finite-difference schemes for low-Mach number flows, J. Comput. Phys., 158, 1, 71-97 (2000) · Zbl 0973.76068
[31] Nigro, A.; De Bartolo, C.; Hartmann, R.; Bassi, F., Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows, Int. J. Numer. Methods Fluids, 63, 4, 449-467 (2010) · Zbl 1423.76265
[32] Niroobakhsh, Zahra; Emamy, Nehzat; Mousavi, Roozbeh; Kummer, Florian; Oberlack, Martin, Numerical investigation of laminar vortex shedding applying a discontinuous Galerkin finite element method, Prog. Comput. Fluid Dyn., 17, 3, 131 (2017)
[33] Peeters, J. W.R., Turbulence and turbulent heat transfer at supercritical pressure (2016), Delft University of Technology, doctoral thesis
[34] Pesch, L.; van der Vegt, J. J.W., A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids, J. Comput. Phys., 227, 11, 5426-5446 (2008) · Zbl 1144.76033
[35] Piatkowski, Marian; Müthing, Steffen; Bastian, Peter, A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations, J. Comput. Phys., 356, 220-239 (2018) · Zbl 1380.76044
[36] Di Pietro, Daniele Antonio; Ern, Alexandre, Mathematical Aspects of Discontinuous Galerkin Methods (2012), Springer · Zbl 1231.65209
[37] Rhebergen, Sander; Cockburn, Bernardo; van der Vegt, Jaap J. W., A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 339-358 (2013) · Zbl 1286.76033
[38] Roshko, Anatol, On the development of turbulent wakes from vortex streets (1952), California Institute of Technology, PhD thesis
[39] Salari, Kambiz; Knupp, Patrick, Code Verification by the Method of Manufactured Solutions (2000), Sandia National Labs.: Sandia National Labs. Albuquerque, NM (US), Livermore, CA (US), Technical report
[40] Shahbazi, Khosro, A Parallel High-Order Discontinuous Galerkin Solver for the Unsteady Incompressible Navier-Stokes Equations in Complex Geometries (2007), University of Toronto, PhD thesis
[41] Shahbazi, Khosro; Fischer, Paul F.; Ethier, C. Ross, A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 1, 391-407 (2007) · Zbl 1216.76034
[42] Shi, J.-M.; Gerlach, D.; Breuer, M.; Biswas, G.; Durst, F., Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder, Phys. Fluids, 16, 12, 4331-4345 (2004) · Zbl 1187.76482
[43] Shunn, Lee; Ham, Frank; Moin, Parviz, Verification of variable-density flow solvers using manufactured solutions, J. Comput. Phys., 231, 9, 3801-3827 (2012) · Zbl 1402.76107
[44] Solin, Pavel; Segeth, Karel; Dolezel, Ivo, Higher-Order Finite Element Methods (2003), Chapman and Hall/CRC: Chapman and Hall/CRC New York
[45] Span, Roland; Wagner, Wolfgang, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25, 6, 1509-1596 (Nov. 1996)
[46] Volpe, G., Performance of compressible flow codes at low Mach numbers, AIAA J., 31, 1, 49-56 (1993) · Zbl 0775.76140
[47] Wang, An-Bang; Trávníček, Zdenek; Chia, Kai-Chien, On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder, Phys. Fluids, 12, 6, 1401-1410 (2000) · Zbl 1149.76579
[48] (2020), [Online]
[49] Williamson, C. H.K., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 206, 579-627 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.