×

A second-order-accurate immersed boundary ghost-cell method with hybrid reconstruction for compressible flow simulations. (English) Zbl 1521.76479

Summary: This study presents an improved ghost-cell immersed boundary method for geometrically complex boundaries in compressible flow simulations. A bilinearly complete extrapolation scheme is developed for the reconstruction of the ghost-cell. The second-order accuracy of the improved ghost-cell method (GCM) is shown in unit test cases and is also theoretically proven. A hybrid GCM based on both baseline GCM and improved GCM is proposed and constructed. The hybrid GCM applied in compressible flow is validated against five test cases: (a) Stationary rotating vortex, (b) Prandtl-Meyer expansion flow, (c) Double Mach reflection, (d) Moving-shock/obstacle interaction, (e) Blunt body shock-induced combustion. This paper provides a comprehensive comparison of their performance in terms of various accuracy and computation time measurements. The simulation results demonstrate that the hybrid GCM has higher accuracy and convergence than the remaining two GCMs in all cases. By directly comparing the primitive variables along the boundary, it can be concluded that the hybrid GCM has significant advantages in compressible flow simulations. The results of CPU time show that the hybrid GCM can provide more accurate results while ensuring the efficiency of the calculation.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76Nxx Compressible fluids and gas dynamics

Software:

AMReX; HLLE; VTF; HE-E1GODF; AMROC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J Comput Phys, 10, 2, 252-271 (1972) · Zbl 0244.92002
[2] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 3, 220-252 (1977) · Zbl 0403.76100
[3] Peskin, C. S., The immersed boundary method, Acta Numer, 11, 479-517 (2002) · Zbl 1123.74309
[4] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261 (2005) · Zbl 1117.76049
[5] Clarke, D. K.; Salas, M.; Hassan, H., Euler calculations for multielement airfoils using Cartesian grids, AIAA J, 24, 3, 353-358 (1986) · Zbl 0587.76095
[6] Udaykumar, H. S.; Shyy, W.; Rao, M. M., Elafint: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries, Int J Numer Methods Fluids, 22, 8, 691-712 (1996) · Zbl 0887.76059
[7] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J Comput Phys, 156, 2, 209-240 (1999) · Zbl 0957.76043
[8] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, Cent Turbul Res Annu Res Briefs, 161, 1, 317-327 (1997)
[9] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J Comput Phys, 161, 1, 35-60 (2000) · Zbl 0972.76073
[10] Tseng, Y.-H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J Comput Phys, 192, 2, 593-623 (2003) · Zbl 1047.76575
[11] Ding, H.; Shu, C.; Cai, Q., Applications of stencil-adaptive finite difference method to incompressible viscous flows with curved boundary, Comput & Fluids, 36, 4, 786-793 (2007) · Zbl 1177.76255
[12] Luo, H.; Mittal, R.; Zheng, X.; Bielamowicz, S. A.; Walsh, R. J.; Hahn, J. K., An immersed-boundary method for flow-structure interaction in biological systems with application to phonation, J Comput Phys, 227, 22, 9303-9332 (2008) · Zbl 1148.74048
[13] Seo, J. H.; Mittal, R., A high-order immersed boundary method for acoustic wave scattering and low-mach number flow-induced sound in complex geometries, J Comput Phys, 230, 4, 1000-1019 (2011) · Zbl 1391.76698
[14] Xia, J.; Luo, K.; Fan, J., A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation, Int J Heat Mass Transfer, 75, 302-312 (2014)
[15] Luo, K.; Zhuang, Z.; Fan, J.; Haugen, N. E.L., A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions, Int J Heat Mass Transfer, 92, 708-717 (2016)
[16] Ferziger, J. H.; Perić, M.; Street, R. L., Computational methods for fluid dynamics (2002), Springer · Zbl 0998.76001
[17] Majumdar, S.; Iaccarino, G.; Durbin, P., Rans solvers with adaptive structured boundary non-conforming grids, Annu Res Briefs, 1 (2001)
[18] Felten, F. N.; Lund, T. S., Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J Comput Phys, 215, 2, 465-484 (2006) · Zbl 1173.76382
[19] Pan, D.; Shen, T.-T., Computation of incompressible flows with immersed bodies by a simple ghost cell method, Int J Numer Methods Fluids, 60, 12, 1378-1401 (2009) · Zbl 1170.76043
[20] Pan, D.; Chang, C.-H., The capturing of free surfaces in incompressible multi-fluid flows, Int J Numer Methods Fluids, 33, 2, 203-222 (2000) · Zbl 0972.76067
[21] Pan, D., An immersed boundary method on unstructured Cartesian meshes for incompressible flows with heat transfer, Numer Heat Transfer B, 49, 3, 277-297 (2006)
[22] Gilmanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J Comput Phys, 207, 2, 457-492 (2005) · Zbl 1213.76135
[23] Gilmanov, A.; Acharya, S., A computational strategy for simulating heat transfer and flow past deformable objects, Int J Heat Mass Transfer, 51, 17-18, 4415-4426 (2008) · Zbl 1151.80002
[24] Shrivastava, M.; Agrawal, A.; Sharma, A., A novel level set-based immersed-boundary method for CFD simulation of moving-boundary problems, Numer Heat Transfer B, 63, 4, 304-326 (2013)
[25] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; Von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J Comput Phys, 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[26] Berthelsen, P. A.; Faltinsen, O. M., A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries, J Comput Phys, 227, 9, 4354-4397 (2008) · Zbl 1388.76199
[27] Ghias, R.; Mittal, R.; Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J Comput Phys, 225, 1, 528-553 (2007) · Zbl 1343.76043
[28] Ji, H.; Lien, F.-S.; Yee, E., Numerical simulation of detonation using an adaptive Cartesian cut-cell method combined with a cell-merging technique, Comput & Fluids, 39, 6, 1041-1057 (2010) · Zbl 1242.76168
[29] Deiterding, R., Parallel adaptive simulation of multi-dimensional detonation structures (2003), Dissertation. de
[30] Deiterding, R., A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains, Comput Struct, 87, 11-12, 769-783 (2009)
[31] Deiterding, R.; Cirak, F.; Mauch, S. P.; Meiron, D., A virtual test facility for simulating detonation-and shock-induced deformation and fracture of thin flexible shells, Int J Multiscale Comput Eng, 5, 1 (2007)
[32] Deiterding, R.; Radovitzky, R.; Mauch, S. P.; Noels, L.; Cummings, J. C.; Meiron, D. I., A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading, Eng Comput, 22, 3-4, 325-347 (2006)
[33] Chi, C.; Lee, B. J.; Im, H. G., An improved ghost-cell immersed boundary method for compressible flow simulations, Int J Numer Methods Fluids, 83, 2, 132-148 (2017)
[34] Chi, C.; Abdelsamie, A.; Thévenin, D., A directional ghost-cell immersed boundary method for incompressible flows, J Comput Phys, 404, Article 109122 pp. (2020) · Zbl 1453.76123
[35] Deiterding, R., AMROC-blockstructured adaptive mesh refinement in object-oriented C++ (2003)
[36] Deiterding, R., Construction and application of an AMR algorithm for distributed memory computers, (Adaptive mesh refinement-theory and applications (2005), Springer), 361-372 · Zbl 1065.65114
[37] Deiterding, R., Block-structured adaptive mesh refinement-theory, implementation and application, (Esaim: proceedings, vol. 34 (2011), EDP Sciences), 97-150 · Zbl 1302.65220
[38] Zhang, W.; Almgren, A.; Beckner, V.; Bell, J.; Blaschke, J.; Chan, C., AMReX: a framework for block-structured adaptive mesh refinement, J Open Source Softw, 4, 37, 1370 (2019)
[39] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction (2013), Springer Science & Business Media
[40] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J Comput Phys, 32, 1, 101-136 (1979) · Zbl 1364.65223
[41] McKee, S.; Tomé, M. F.; Ferreira, V. G.; Cuminato, J. A.; Castelo, A.; Sousa, F., The MAC method, Comput & Fluids, 37, 8, 907-930 (2008) · Zbl 1237.76128
[42] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 2, 708-759 (2001) · Zbl 1047.76574
[43] Lörstad, D.; Francois, M.; Shyy, W.; Fuchs, L., Assessment of volume of fluid and immersed boundary methods for droplet computations, Int J Numer Methods Fluids, 46, 2, 109-125 (2004) · Zbl 1060.76618
[44] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results, J Comput Phys, 169, 2, 463-502 (2001) · Zbl 0988.65093
[45] Osher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces (2006), Springer Science & Business Media
[46] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Ann Rev Fluid Mech, 35, 1, 341-372 (2003) · Zbl 1041.76057
[47] Majidi, S.; Afshari, A., Towards numerical simulations of supersonic liquid jets using ghost fluid method, Int J Heat Fluid Flow, 53, 98-112 (2015)
[48] Forrer, H.; Jeltsch, R., A higher-order boundary treatment for Cartesian-grid methods, J Comput Phys, 140, 2, 259-277 (1998) · Zbl 0936.76041
[49] Pember, R. B.; Bell, J. B.; Colella, P.; Curtchfield, W. Y.; Welcome, M. L., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J Comput Phys, 120, 2, 278-304 (1995) · Zbl 0842.76056
[50] Berger, M. J.; LeVeque, R. J., Stable boundary conditions for Cartesian grid calculations, Comput Syst Eng, 1, 2-4, 305-311 (1990)
[51] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J Comput Phys, 54, 1, 115-173 (1984) · Zbl 0573.76057
[52] Ben-Dor, G.; Glass, I., Domains and boundaries of non-stationary oblique shock-wave reflexions. 1. Diatomic gas, J Fluid Mech, 92, 3, 459-496 (1979)
[53] Chang, S.-M.; Chang, K.-S., On the shock-vortex interaction in Schardin’s problem, Shock Waves, 10, 5, 333-343 (2000) · Zbl 0982.76506
[54] Boukharfane, R.; Ribeiro, F. H.E.; Bouali, Z.; Mura, A., A combined ghost-point-forcing/direct-forcing immersed boundary method (IBM) for compressible flow simulations, Comput & Fluids, 162, 91-112 (2018) · Zbl 1390.76554
[55] Lehr, H. F., Experiments on shock-induced combustion, Astronaut Acta, 17, 589-597 (1972)
[56] Harten, A.; Lax, P. D.; Leer, B.v., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 1, 35-61 (1983) · Zbl 0565.65051
[57] Westbrook, C. K., Hydrogen oxidation kinetics in gaseous detonations, Combust Sci Technol, 29, 1-2, 67-81 (1982)
[58] McVey, J.; Toong, T., Mechanism of instabilities of exothermic hypersonic blunt-body flows, Combust Sci Technol, 3, 2, 63-76 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.