×

Polygonal composite elements for stress-constrained topology optimization of nearly incompressible materials. (English) Zbl 1493.74096

Summary: We in this paper propose an efficient and vigorous approach based on flexible polygonal meshes for solving stress-constrained topology optimization problems involving both compressible and nearly incompressible materials. The core idea is to employ a polygonal composite finite element technique to deal with volumetric locking phenomena in nearly incompressible material limit. Then, to effectively solve topology optimization problems with local stress constraints, an augmented Lagrangian technique that allows treating problems with a large number of constraints is exploited. By employing the augmented Lagrangian method, the solution of the original optimization problem with a lot of constraints could be obtained by solving a series of unconstrained optimization ones and updating the design variables based on the method of moving asymptotes. The significant contribution of this work is to promote a unified formulation for stress-constrained topology optimization possessing the following salient features: (a) being valid for both compressible and nearly incompressible materials; (b) being valid for triangular, quadrilateral and polygonal elements; (c) sole displacement field involved; and (d) no constraint aggregation technique required. Through several numerical examples, for the first time, distinguishing and intriguing features of the optimized topology for nearly incompressible materials with stress constraints are exhibited in the present work.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amstutz, S.; Novotny, A. A., Topological optimization of structures subject to von mises stress constraints, Struct. Multidiscip. Optim., 41, 3, 407-420 (2010) · Zbl 1274.74053
[2] Areias, P.; Rodrigues, H.; Rabczuk, T., Coupled finite-element/topology optimization of continua using the Newton-Raphson method, Eur. J. Mech. A Solids, 85, Article 104117 pp. (2021) · Zbl 1486.74115
[3] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, And Applications (2013), Springer Science & Business Media · Zbl 1059.74001
[4] Birgin, E. G.; Martínez, J. M., Practical Augmented Lagrangian Methods For Constrained Optimization (2014), SIAM · Zbl 1339.90312
[5] Bourdin, B., Filters in topology optimization, Int. J. Numer. Methods Eng., 50, 9, 2143-2158 (2001) · Zbl 0971.74062
[6] Bruggi, M., Topology optimization with mixed finite elements on regular grids, Comput. Methods Appl. Mech. Eng., 305, 133-153 (2016) · Zbl 1425.74372
[7] Bruggi, M.; Duysinx, P., Topology optimization for minimum weight with compliance and stress constraints, Struct. Multidiscip. Optim., 46, 3, 369-384 (2012) · Zbl 1274.74219
[8] Bruggi, M.; Venini, P., Topology optimization of incompressible media using mixed finite elements, Comput. Methods Appl. Mech. Eng., 196, 33-34, 3151-3164 (2007) · Zbl 1173.74372
[9] Da Silva, G.; Beck, A.; Cardoso, E., Topology optimization of continuum structures with stress constraints and uncertainties in loading, Int. J. Numer. Methods Eng., 113, 1, 153-178 (2018)
[10] da Silva, G. A.; Beck, A. T.; Sigmund, O., Stress-constrained topology optimization considering uniform manufacturing uncertainties, Comput. Methods Appl. Mech. Eng., 344, 512-537 (2019) · Zbl 1440.74290
[11] da Silva, G. A.; Beck, A. T.; Sigmund, O., Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness, Comput. Methods Appl. Mech. Eng., 354, 397-421 (2019) · Zbl 1441.74156
[12] Duarte, L. S.; Celes, W.; Pereira, A.; Menezes, I. F.; Paulino, G. H., PolyTop++: an efficient alternative for serial and parallel topology optimization on CPUs & GPUs, Struct. Multidiscip. Optim., 52, 5, 845-859 (2015)
[13] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Int. J. Numer. Methods Eng., 43, 8, 1453-1478 (1998) · Zbl 0924.73158
[14] Emmendoerfer, H.; Fancello, E. A., A level set approach for topology optimization with local stress constraints, Int. J. Numer. Methods Eng., 99, 2, 129-156 (2014) · Zbl 1352.74238
[15] Fancello, E., Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions, Struct. Multidiscip. Optim., 32, 3, 229-240 (2006) · Zbl 1245.74071
[16] Filipov, E. T.; Chun, J.; Paulino, G. H.; Song, J., Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics, Struct. Multidiscip. Optim., 53, 4, 673-694 (2016)
[17] Gain, A. L.; Paulino, G. H., Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation, Struct. Multidiscip. Optim., 46, 3, 327-342 (2012) · Zbl 1274.74332
[18] Gain, A. L.; Paulino, G. H.; Duarte, L. S.; Menezes, I. F., Topology optimization using polytopes, Comput. Methods Appl. Mech. Eng., 293, 411-430 (2015) · Zbl 1423.74745
[19] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Eng., 313, 239-258 (2017) · Zbl 1439.74414
[20] Ghasemi, H.; Park, H. S.; Rabczuk, T., A multi-material level set-based topology optimization of flexoelectric composites, Comput. Methods Appl. Mech. Eng., 332, 47-62 (2018) · Zbl 1439.74270
[21] Giannini, D.; Aage, N.; Braghin, F., Topology optimization of MEMS resonators with target eigenfrequencies and modes, Eur. J. Mech. A Solids, 91, Article 104352 pp. (2022) · Zbl 1507.74296
[22] Giraldo-Londoño, O.; Paulino, G. H., A unified approach for topology optimization with local stress constraints considering various failure criteria: von mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler-Pister and Willam-Warnke, Proc. R. Soc. A, 476, 2238, Article 20190861 pp. (2020) · Zbl 1472.74179
[23] Giraldo-Londoño, O.; Paulino, G. H., PolyStress: a matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method, Struct. Multidiscip. Optim., 63, 4, 2065-2097 (2021)
[24] Ho-Nguyen-Tan, T.; Kim, H.-G., Polygonal shell elements with assumed transverse shear and membrane strains, Comput. Methods Appl. Mech. Eng., 349, 595-627 (2019) · Zbl 1441.74246
[25] Hoang, V.-N.; Nguyen, H. B.; Nguyen-Xuan, H., Explicit topology optimization of nearly incompressible materials using polytopal composite elements, Adv. Eng. Softw., 149, Article 102903 pp. (2020)
[26] Hoang, V.-N.; Pham, T.; Ho, D.; Nguyen-Xuan, H., Robust multiscale design of incompressible multi-materials under loading uncertainties, Eng. Comput., 1-16 (2021)
[27] Holmberg, E.; Torstenfelt, B.; Klarbring, A., Stress constrained topology optimization, Struct. Multidiscip. Optim., 48, 1, 33-47 (2013) · Zbl 1274.74341
[28] Hughes, T. J., Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Methods Eng., 15, 9, 1413-1418 (1980) · Zbl 0437.73053
[29] Huynh, H. D.; Natarajan, S.; Nguyen-Xuan, H.; Zhuang, X., Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models, Comput. Mech., 66, 6, 1257-1274 (2020) · Zbl 1467.74085
[30] Izmailov, A. F.; Solodov, M. V.; Uskov, E., Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints, SIAM J. Optim., 22, 4, 1579-1606 (2012) · Zbl 1274.90385
[31] Jang, G.-W.; Panganiban, H.; Chung, T. J., P1-nonconforming quadrilateral finite element for topology optimization, Int. J. Numer. Methods Eng., 84, 6, 685-707 (2010) · Zbl 1202.74172
[32] Kambampati, S.; Gray, J. S.; Kim, H. A., Level set topology optimization of structures under stress and temperature constraints, Comput. Struct., 235, Article 106265 pp. (2020)
[33] Khatir, S.; Boutchicha, D.; Le Thanh, C.; Tran-Ngoc, H.; Nguyen, T.; Abdel-Wahab, M., Improved ANN technique combined with jaya algorithm for crack identification in plates using XIGA and experimental analysis, Theor. Appl. Fract. Mech., 107, Article 102554 pp. (2020)
[34] Khatir, S.; Wahab, M. A., Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and jaya algorithm, Eng. Fract. Mech., 205, 285-300 (2019)
[35] Khatir, S.; Wahab, M. A.; Boutchicha, D.; Khatir, T., Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis, J. Sound Vib., 448, 230-246 (2019)
[36] Kreisselmeier, G.; Steinhauser, R., Systematic control design by optimizing a vector performance index, (Computer Aided Design Of Control Systems (1980), Elsevier), 113-117 · Zbl 0443.49028
[37] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 4, 605-620 (2010)
[38] Lee, K.; Ahn, K.; Yoo, J., A novel P-norm correction method for lightweight topology optimization under maximum stress constraints, Comput. Struct., 171, 18-30 (2016)
[39] Li, E.; Chang, C.; He, Z.; Zhang, Z.; Li, Q., Smoothed finite element method for topology optimization involving incompressible materials, Eng. Optim., 48, 12, 2064-2089 (2016)
[40] Li, C.; Tong, L., Topology optimization of incompressible materials based on the mixed SBFEM, Comput. Struct., 165, 24-33 (2016)
[41] Lian, H.; Christiansen, A. N.; Tortorelli, D. A.; Sigmund, O.; Aage, N., Combined shape and topology optimization for minimization of maximal von mises stress, Struct. Multidiscip. Optim., 55, 5, 1541-1557 (2017)
[42] Luo, Y.; Wang, M. Y.; Kang, Z., An enhanced aggregation method for topology optimization with local stress constraints, Comput. Methods Appl. Mech. Eng., 254, 31-41 (2013) · Zbl 1297.74098
[43] Natarajan, S.; Ooi, E. T.; Chiong, I.; Song, C., Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation, Finite Elem. Anal. Des., 85, 101-122 (2014)
[44] Nguyen, S. H.; Kim, H.-G., Stress-constrained shape and topology optimization with the level set method using trimmed hexahedral meshes, Comput. Methods Appl. Mech. Eng., 366, Article 113061 pp. (2020) · Zbl 1442.74175
[45] Nguyen, N. V.; Lee, D.; Nguyen-Xuan, H.; Lee, J., A polygonal finite element approach for fatigue crack growth analysis of interfacial cracks, Theor. Appl. Fract. Mech., 108, Article 102576 pp. (2020)
[46] Nguyen, N. V.; Nguyen, H. X.; Lee, S.; Nguyen-Xuan, H., Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates, Adv. Eng. Softw., 126, 110-126 (2018)
[47] Nguyen, N. V.; Nguyen, H. X.; Phan, D.-H.; Nguyen-Xuan, H., A polygonal finite element method for laminated composite plates, Int. J. Mech. Sci., 133, 863-882 (2017)
[48] Nguyen, N. V.; Nguyen-Xuan, H.; Nguyen, T. N.; Kang, J.; Lee, J., A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement, Compos. Struct., 259, Article 113213 pp. (2021)
[49] Nguyen-Hoang, S.; Sohn, D.; Kim, H.-G., A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems, Comput. Methods Appl. Mech. Eng., 324, 248-277 (2017) · Zbl 1439.74452
[50] Nguyen-Xuan, H.; Chau, K. N.; Chau, K. N., Polytopal composite finite elements, Comput. Methods Appl. Mech. Eng., 355, 405-437 (2019) · Zbl 1441.65109
[51] Nguyen-Xuan, H.; Nguyen-Hoang, S.; Rabczuk, T.; Hackl, K., A polytree-based adaptive approach to limit analysis of cracked structures, Comput. Methods Appl. Mech. Eng., 313, 1006-1039 (2017) · Zbl 1439.74456
[52] Nocedal, J.; Wright, S., Numerical Optimization (2006), Springer Science & Business Media · Zbl 1104.65059
[53] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Topology optimization of continuum structures with local and global stress constraints, Struct. Multidiscip. Optim., 39, 4, 419-437 (2009) · Zbl 1274.74375
[54] Peet, Y.; Fischer, P., Legendre spectral element method with nearly incompressible materials, Eur. J. Mech. A Solids, 44, 91-103 (2014) · Zbl 1406.74642
[55] Pereira, J. T.; Fancello, E. A.; Barcellos, C. S., Topology optimization of continuum structures with material failure constraints, Struct. Multidiscip. Optim., 26, 1-2, 50-66 (2004) · Zbl 1243.74157
[56] Sanders, E. D.; Pereira, A.; Aguiló, M. A.; Paulino, G. H., PolyMat: an efficient matlab code for multi-material topology optimization, Struct. Multidiscip. Optim., 58, 6, 2727-2759 (2018)
[57] Senhora, F. V.; Giraldo-Londono, O.; Menezes, I. F.; Paulino, G. H., Topology optimization with local stress constraints: a stress aggregation-free approach, Struct. Multidiscip. Optim., 62, 4, 1639-1668 (2020)
[58] Sigmund, O.; Clausen, P. M., Topology optimization using a mixed formulation: an alternative way to solve pressure load problems, Comput. Methods Appl. Mech. Eng., 196, 13-16, 1874-1889 (2007) · Zbl 1173.74375
[59] Simo, J. C.; Rifai, M., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 29, 8, 1595-1638 (1990) · Zbl 0724.73222
[60] Sussman, T.; Bathe, K.-J., A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct., 26, 1-2, 357-409 (1987) · Zbl 0609.73073
[61] Svanberg, K.; Werme, M., Sequential integer programming methods for stress constrained topology optimization, Struct. Multidiscip. Optim., 34, 4, 277-299 (2007) · Zbl 1273.74407
[62] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F., Polygonal finite elements for topology optimization: A unifying paradigm, Int. J. Numer. Methods Eng., 82, 6, 671-698 (2010) · Zbl 1188.74072
[63] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F., PolyTop: a matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim., 45, 3, 329-357 (2012) · Zbl 1274.74402
[64] Talischi, C.; Pereira, A.; Menezes, I. F.; Paulino, G. H., Gradient correction for polygonal and polyhedral finite elements, Int. J. Numer. Methods Eng., 102, 3-4, 728-747 (2015) · Zbl 1352.65554
[65] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 6, 767-784 (2011) · Zbl 1274.74409
[66] Yang, X.-S., Optimization Techniques and Applications with Examples (2018), John Wiley & Sons
[67] Yang, D.; Liu, H.; Zhang, W.; Li, S., Stress-constrained topology optimization based on maximum stress measures, Comput. Struct., 198, 23-39 (2018)
[68] Zegard, T.; Paulino, G. H., Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53, 1, 175-192 (2016)
[69] Zhang, G.; Alberdi, R.; Khandelwal, K., Topology optimization with incompressible materials under small and finite deformations using mixed u/p elements, Int. J. Numer. Methods Eng., 115, 8, 1015-1052 (2018)
[70] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element Method: Its Basis And Fundamentals (2005), Elsevier · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.