×

A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes. (English) Zbl 07517157

Summary: A cell-centered implicit-explicit updated Lagrangian finite volume scheme on unstructured grids is proposed for a unified first-order hyperbolic formulation of continuum fluid and solid mechanics, namely the Godunov-Peshkov-Romenski (GPR) model. The scheme provably respects the stiff relaxation limits of the continuous model at the fully discrete level, thus it is asymptotic preserving. Furthermore, the GCL is satisfied by a compatible discretization that makes use of a nodal solver to compute vertex-based fluxes that are used both for the motion of the computational mesh as well as for the time evolution of the governing PDEs. Second order of accuracy in space is achieved using a TVD piecewise linear reconstruction, while an implicit-explicit (IMEX) Runge-Kutta time discretization allows the scheme to obtain higher accuracy also in time. Particular care is devoted to the design of a stiff ODE solver, based on approximate analytical solutions of the governing equations, that plays a crucial role when the visco-plastic limit of the model is approached. We demonstrate the accuracy and robustness of the scheme on a wide spectrum of material responses covered by the unified continuum model that includes inviscid hydrodynamics, viscous heat conducting fluids, elastic and elasto-plastic solids in multidimensional settings.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Nxx Compressible fluids and gas dynamics

Software:

CHIC; HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Arranz, Aurelio, A vertex centred Finite Volume Jameson - Schmidt - Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics, J. Comput. Phys., 259, 672-699 (2014) · Zbl 1349.74341
[2] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[3] Barth, T. J.; Frederickson, P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction (January 1990), 28th Aerospace Sciences Meeting, AIAA paper no. 90-0013
[4] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, 1-12 (1989), AIAA paper 89-0366
[5] Barton, P. T.; Drikakis, D.; Romenski, E. I., An Eulerian finite-volume scheme for large elastoplastic deformations in solids, Int. J. Numer. Methods Eng., 81, 4, 453-484 (2010) · Zbl 1183.74331
[6] Barton, Philip T., An interface-capturing Godunov method for the simulation of compressible solid-fluid problems, J. Comput. Phys., 390, 25-50 (aug 2019) · Zbl 1452.74033
[7] Becker, R., Stosswelle und Detonation, Physik, 8, 321 (1923)
[8] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J. Comput. Phys., 55, 1-32 (1984) · Zbl 0535.76070
[9] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[10] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P. H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian—Eulerian methods, J. Comput. Phys., 230, 6664-6687 (2011) · Zbl 1408.65077
[11] Bernstein, Barry, Hypo-elasticity and elasticity, Arch. Ration. Mech. Anal., 6, 89-104 (1960) · Zbl 0094.36702
[12] Bonet, J.; Gil, A. J.; Lee, C. Hean; Aguirre, M.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity, Comput. Methods Appl. Mech. Eng., 283, 689-732 (January 2015) · Zbl 1423.74010
[13] Bonet, J.; Lee, C. Hean; Gil, A. J.; Ghavamian, A., A first order hyperbolic framework for large strain computational solid dynamics. Part III: thermo-elasticity, Comput. Methods Appl. Mech. Eng., 373, Article 113505 pp. (January 2021) · Zbl 1506.74005
[14] Boscarino, S.; Russo, G., On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput., 31, 1926-1945 (2009) · Zbl 1193.65162
[15] Boscheri, W., High order direct Arbitrary-Lagrangian-Eulerian (ale) finite volume schemes for hyperbolic systems on unstructured meshes, Arch. Comput. Methods Eng., 24, 751-801 (2017) · Zbl 1437.65117
[16] Boscheri, W.; Dimarco, G.; Loubère, R.; Tavelli, M.; Vignal, M. H., A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, J. Comput. Phys., 415, Article 109486 pp. (2020) · Zbl 1440.76094
[17] Boscheri, W.; Dimarco, G.; Tavelli, M., An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 374, Article 113602 pp. (2021) · Zbl 1506.76109
[18] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206 (2013) · Zbl 1388.65075
[19] Boscheri, W.; Dumbser, M., A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523 (2014) · Zbl 1349.76310
[20] Boscheri, W.; Dumbser, M.; Ioriatti, M.; Peshkov, I.; Romenski, E., A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics, J. Comput. Phys., 424, Article 109866 pp. (jan 2021) · Zbl 07508471
[21] Boscheri, W.; Dumbser, M.; Loubère, R., Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity, Comput. Fluids, 134-135, 111-129 (2016) · Zbl 1390.76399
[22] Boscheri, W.; Dumbser, M.; Loubère, R.; Maire, P.-H., A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics, J. Comput. Phys., 358, 103-129 (2018) · Zbl 1381.76212
[23] Boscheri, Walter; Loubère, Raphaël; Maire, Pierre-Henri, A 3D cell-centered ADER MOOD Finite Volume method for solving updated Lagrangian hyperelasticity on unstructured grids, J. Comput. Phys. (2021)
[24] Boscheri, Walter; Pareschi, Lorenzo, High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 434, Article 110206 pp. (2021) · Zbl 07508522
[25] Bourgeade, A.; LeFloch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. Part II: application to the gas dynamics equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6, 437-480 (1989) · Zbl 0703.35106
[26] Breil, J.; Galera, S.; Maire, P. H., Multi-material ALE computation in inertial confinement fusion code CHIC, Comput. Fluids, 46, 161-167 (2011) · Zbl 1433.76190
[27] Breil, J.; Georges, G.; Maire, P.-H., 3D cell-centered Lagrangian second order scheme for the numerical modeling of hyperelasticity system, Comput. Fluids, 207, Article 104523 pp. (2020) · Zbl 1521.74385
[28] Busto, Saray; Chiocchetti, Simone; Dumbser, Michael; Gaburro, Elena; Peshkov, Ilya, High Order ADER Schemes for Continuum Mechanics, Frontiers in Physics, vol. 8(32) (mar 2020)
[29] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 227-262 (1998) · Zbl 0931.76080
[30] Caramana, E. J.; Rousculp, C. L.; Burton, D. E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry, J. Comput. Phys., 157, 89-119 (2000) · Zbl 0961.76049
[31] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183 (2009) · Zbl 1168.76029
[32] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596 (2007) · Zbl 1126.76035
[33] Cheng, J.; Shu, C. W., A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 229, 7191-7206 (2010) · Zbl 1425.35142
[34] Cheng, J.; Shu, C. W., Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes, Commun. Comput. Phys., 11, 1144-1168 (2012) · Zbl 1373.76158
[35] Cheng, Jun-Bo; Jia, Yueling; Jiang, Song; Toro, Eleuterio F.; Yu, Ming, A second-order cell-centered Lagrangian method for two-dimensional elastic-plastic flows, Commun. Comput. Phys., 22, 5, 1224-1257 (2017) · Zbl 1488.74139
[36] Cheng, T.; Shu, C. W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[37] Chiocchetti, S.; Müller, C., A solver for stiff finite-rate relaxation in Baer-Nunziato two-phase flow models, Fluid Mech. Appl., 121, 31-44 (2020)
[38] Claisse, A.; Després, B.; Labourasse, E.; Ledoux, F., A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes, J. Comput. Phys., 231, 4324-4354 (2012) · Zbl 1426.76350
[39] Derigs, D.; Winters, A. R.; Gassner, G.; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037
[40] Després, B., Numerical Methods for Eulerian and Lagrangian Conservation Laws, Frontiers in Mathematics (2017), Springer International Publishing · Zbl 1379.65069
[41] Després, B.; Mazeran, C., Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers, C. R., Méc., 331, 475-480 (2003) · Zbl 1293.76089
[42] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372 (2005) · Zbl 1096.76046
[43] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 65, 1295-1310 (2011) · Zbl 1255.76075
[44] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 606-641 (2012) · Zbl 1255.76076
[45] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Comput. Fluids, 83, 58-69 (2013) · Zbl 1290.76061
[46] Dukovicz, J. K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99, 115-134 (1992) · Zbl 0743.76058
[47] Dumbser, M.; Kaeser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[48] Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy, A unified hyperbolic formulation for viscous fluids and elastoplastic solids, (Klingenberg, Christian; Westdickenberg, Michael, Theory, Numerics and Applications of Hyperbolic Problems II. Theory, Numerics and Applications of Hyperbolic Problems II, Springer Proceedings in Mathematics and Statistics, vol. 237 (2018), Springer International Publishing), 451-463 · Zbl 1417.35191
[49] Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo, High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (jun 2016) · Zbl 1349.76324
[50] Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo, High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics, J. Comput. Phys., 348, 298-342 (nov 2017)
[51] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17, 5, 679-706 (1981) · Zbl 0478.73049
[52] Le Floch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. Part I: general theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5, 179-207 (1988) · Zbl 0679.35064
[53] Vilar, F., Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics, Comput. Fluids, 64, 64-73 (2012) · Zbl 1365.76129
[54] Vilar, F.; Maire, P. H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. Fluids, 46, 1, 498-604 (2010) · Zbl 1433.76093
[55] Gavrilyuk, S. L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969 (2008) · Zbl 1155.74020
[56] Georges, G.; Breil, J.; Maire, P.-H., A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations, J. Comput. Phys., 305, 921-941 (2016) · Zbl 1349.76768
[57] Gil, A. J.; Lee, C. Hean; Bonet, J.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part II: total Lagrangian compressible, nearly incompressible and truly incompressible elasticity, Comput. Methods Appl. Mech. Eng., 300, 146-181 (March 2016) · Zbl 1425.74016
[58] Godunov, S. K., Elements of Mechanics of Continuous Media (1978), Nauka
[59] Godunov, S. K.; Peshkov, I. M., Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium, Comput. Math. Math. Phys., 50, 8, 1409-1426 (aug 2010) · Zbl 1224.74017
[60] Godunov, S. K.; Romenskii, E. I., Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates, J. Appl. Mech. Tech. Phys., 13, 6, 868-884 (nov 1972)
[61] Godunov, S. K.; Romenskii, E. I., Elements of Continuum Mechanics and Conservation Laws (2003), Kluwer Academic/Plenum Publishers · Zbl 1031.74004
[62] Goudreau, G. L.; Hallquist, J. O., Recent developments in large-scale finite element Lagrangian hydrocode technology, Comput. Methods Appl. Mech. Eng., 33, 1, 725-757 (1982) · Zbl 0493.73072
[63] Haider, J.; Lee, C. Hean; Gil, A. J.; Huerta, A.; Bonet, J., An upwind cell centred total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications, Comput. Methods Appl. Mech. Eng., 340, 684-727 (2018) · Zbl 1440.74458
[64] Hassan, Osama I.; Ghavamian, Ataollah; Lee, Chun Hean; Gil, Antonio J.; Bonet, Javier; Auricchio, Ferdinando, An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: total and updated Lagrangian formulations, J. Comput. Phys. X, 3, Article 100025 pp. (jun 2019)
[65] Howell, B. P.; Ball, G. J., A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids, J. Comput. Phys., 175, 1, 128-167 (jan 2002) · Zbl 1043.74048
[66] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127 (1999) · Zbl 0926.65090
[67] Haran, Jackson; Nikiforakis, Nikos, A numerical scheme for non-Newtonian fluids and plastic solids under the GPR model, J. Comput. Phys., 387, 410-429 (jun 2019) · Zbl 1452.76119
[68] Haran, Jackson; Nikiforakis, Nikos, A unified Eulerian framework for multimaterial continuum mechanics, J. Comput. Phys., 401, Article 109022 pp. (jan 2020) · Zbl 1453.65252
[69] Kamm, J.; Brock, J.; Brandon, S.; Cotrell, D. L.; Johnson, B. M.; Knupp, P.; Trucano, T. G.; Rider, W. J.; Weirs, V. G., Enhanced verification test suite for physics simulations codes (2008), Technical Report LA-14379
[70] Kamm, J. R.; Timmes, F. X., On efficient generation of numerically robust Sedov solutions (2007), Los Alamos National Laboratory, Technical Report LA-UR-07-2849
[71] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508 (2005) · Zbl 1072.65116
[72] Kemm, Friedemann; Gaburro, Elena; Thein, Ferdinand; Dumbser, Michael, A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model, Comput. Fluids, 204, Article 104536 pp. (may 2020) · Zbl 1519.76176
[73] Kidder, R. E., Laser-driven compression of hollow shells: power requirements and stability limitations, Nucl. Fusion, 1, 3-14 (1976)
[74] Kluth, G.; Després, B., Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, J. Comput. Phys., 229, 24, 9092-9118 (2010) · Zbl 1427.74029
[75] Lee, C. H.; Gil, A. J.; Bonet, J., Development of a stabilised Petrov-Galerkin formulation for conservation laws in Lagrangian fast solid dynamics, Comput. Methods Appl. Mech. Eng., 268, 40-64 (2014) · Zbl 1295.74099
[76] Lieberman, E. J.; Liu, X.; Morgan, N. R.; Luscher, D. J.; Burton, D. E., A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics, Comput. Methods Appl. Mech. Eng., 353, 467-490 (2019) · Zbl 1441.74035
[77] Lieberman, E. J.; Morgan, N. R.; Luscher, D. J.; Burton, D. E., A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows, Comput. Math. Appl., 353, 318-334 (2019) · Zbl 1442.65267
[78] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891 (2009) · Zbl 1287.76181
[79] Loubère, R.; Maire, P. H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Proc. Comput. Sci., 1, 1931-1939 (2010) · Zbl 1432.76206
[80] Loubère, R.; Maire, P. H.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42 (2013) · Zbl 1455.76164
[81] Maire, P.-H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 228, 18, 6882-6915 (2009) · Zbl 1261.76021
[82] Maire, P.-H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int. J. Numer. Methods Fluids, 65, 1281-1294 (2011) · Zbl 1429.76089
[83] Maire, P.-H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. Fluids, 46, 1, 341-347 (2011) · Zbl 1433.76137
[84] Maire, P.-H.; Abgrall, R.; Breil, J.; Loubère, R.; Rebourcet, B., A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids, J. Comput. Phys., 235, 626-665 (2013) · Zbl 1291.74186
[85] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824 (2007) · Zbl 1251.76028
[86] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 3, 799-821 (2009) · Zbl 1156.76039
[87] Pierre-Henri, Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 7, 2391-2425 (apr 2009) · Zbl 1156.76434
[88] Malyshev, A. N.; Romenskii, E. I., Hyperbolic equations for heat transfer. Global solvability of the Cauchy problem, Sib. Math. J., 27, 5, 734-740 (1987) · Zbl 0654.35062
[89] Anand, L.; Gurtin, M. E.; Fried, E., The Mechanics and Thermodynamics of Continua (2009), Cambridge University Press · Zbl 1165.74003
[90] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42 (1994) · Zbl 0796.76057
[91] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741 (2011) · Zbl 1284.76255
[92] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 129-155 (2005) · Zbl 1203.65111
[93] Peshkov, Ilya; Boscheri, Walter; Loubère, Raphaël; Romenski, Evgeniy; Dumbser, Michael, Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity, J. Comput. Phys., 387, 481-521 (2019) · Zbl 1452.74022
[94] Peshkov, Ilya; Dumbser, Michael; Boscheri, Walter; Romenski, Evgeniy; Chiocchetti, Simone; Ioriatti, Matteo, Simulation of non-Newtonian viscoplastic flows with a unified first order hyperbolic model and a structure-preserving semi-implicit scheme, Comput. Fluids, 224, Article 104963 pp. (jun 2021) · Zbl 1521.76573
[95] Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav, Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations, Contin. Mech. Thermodyn., 30, 6, 1343-1378 (nov 2018) · Zbl 1439.70036
[96] Peshkov, Ilya; Romenski, Evgeniy, A hyperbolic model for viscous Newtonian flows, Contin. Mech. Thermodyn., 28, 1-2, 85-104 (mar 2016) · Zbl 1348.76046
[97] Peshkov, Ilya; Romenski, Evgeniy; Dumbser, Michael, Continuum mechanics with torsion, Contin. Mech. Thermodyn., 31, 5, 1517-1541 (2019)
[98] Romenski, Evgeniy; Peshkov, Ilya; Dumbser, Michael; Fambri, Francesco, A new continuum model for general relativistic viscous heat-conducting media, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 378, 2170, Article 20190175 pp. (may 2020) · Zbl 1462.82032
[99] Romenskii, E. I., Dynamic three-dimensional equations of the Rakhmatulin elastic-plastic model, J. Appl. Mech. Tech. Phys., 20, 2, 229-244 (1979)
[100] Romenskii, E. I., Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media, Sib. Math. J., 30, 4, 606-625 (1990) · Zbl 0741.73022
[101] Rubin, M. B., An Eulerian formulation of inelasticity: from metal plasticity to growth of biological tissues, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 377, 2144, Article 20180071 pp. (may 2019) · Zbl 1425.74327
[102] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279 (1961)
[103] Massoni, J.; Hank, S.; Favrie, N., Modeling hyperelasticity in non-equilibrium multiphase flows, J. Comput. Phys., 330, 65-91 (2017) · Zbl 1378.74022
[104] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Int. J. Numer. Methods Fluids, 72, 770-810 (2013) · Zbl 1455.74019
[105] Scovazzi, G.; Carnes, B.; Zeng, X.; Rossi, S., A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach, Int. J. Numer. Methods Eng., 106, 799-839 (2016) · Zbl 1352.74434
[106] Shu, C.-W.; Cheng, J., A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations, Commun. Comput. Phys., 4, 1008-1024 (2008) · Zbl 1364.76111
[107] Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 357-393 (1959)
[108] Smith, R. W., AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme, J. Comput. Phys., 150, 268-286 (1999) · Zbl 0936.76046
[109] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[110] Tavelli, M.; Romenski, E.; Chiocchetti, S.; Gabriel, A.-A.; Dumbser, M., Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure, J. Comput. Phys., Article 109758 pp. (2020) · Zbl 07508383
[111] Tavelli, Maurizio; Dumbser, Michael; Charrier, Dominic Etienne; Rannabauer, Leonhard; Weinzierl, Tobias; Bader, Michael, A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography, J. Comput. Phys., 386, 158-189 (2019) · Zbl 1452.74113
[112] Taylor, G. I., The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 194, 1038, 289-299 (1948)
[113] Titarev, V. A.; Toro, E. F., ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (December 2002) · Zbl 1024.76028
[114] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[115] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[116] Toro, E. F., Anomalies of conservative methods: analysis, numerical evidence and possible cures, Int. J. Comput. Fluid Dyn., 11, 128-143 (2002)
[117] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction (2009), Springer · Zbl 1227.76006
[118] Truesdell, C., Hypo-elasticity, J. Ration. Mech. Anal., 4, 83-1020 (1955) · Zbl 0064.42002
[119] von Neumann, J.; Richtmyer, R. D., A method for the numerical calculations of hydrodynamical shocks, 21, 232-238 (1950) · Zbl 0037.12002
[120] Wallis, Tim; Barton, Philip T.; Nikiforakis, Nikolaos, A flux-enriched Godunov method for multi-material problems with interface slide and void opening, J. Comput. Phys., 442, Article 110499 pp. (oct 2021) · Zbl 07513807
[121] Wilkins, M. L., Calculation of elastic plastic flow, (Alder, B.; Fernbach, S.; Rotenberg, M., Methods in Computational Physics, vol. 3 (1964), Academic Press: Academic Press New York), 211-263
[122] Wu, T.; Shashkov, M.; Morgan, N. R.; Kuzmin, D.; Luo, H., An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics, Comput. Math. Appl., 78, 258-273 (2019) · Zbl 1442.65282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.