×

A new kinetic-energy-preserving method based on the convective rotational form. (English) Zbl 07518059

Summary: We present a new conservative discretization of the Navier-Stokes convective term that is also kinetic energy preserving (KEP). For divergence-free velocity fields, the specialized splitting recovers the traditional convective rotational form and therefore exhibits enhanced discrete secondary consistency with respect to vortical dynamics. The proposed method is first developed in the incompressible setting and is then extended to compressible flows via a square-root density weighting. It furthermore forms the basis for identifying a novel one-parameter family of KEP methods that leverages small-scale corrections to the momentum pressure gradient. Matrix-vector analysis associated with diagonal-norm finite difference summation-by-parts operators is used to straightforwardly study the preservation properties of different convective term formulations, including the new method, per the limitations of a discrete product rule. Preliminary evaluations on canonical test cases (i.e., isentropic and Taylor Green vortex simulations) are used to demonstrate the robustness of the current splitting and its performance with respect to representing secondary quantities.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Fxx Turbulence

Software:

EMD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, J. Comput. Phys., 227, 1676-1700 (2008) · Zbl 1290.76135
[2] Edoh, A. K.; Mundis, N. L.; Karagozian, A. R.; Sankaran, V., Balancing aspects of numerical dissipation, dispersion, and aliasing in time-accurate simulations, Int. J. Numer. Methods Fluids, 92, 1506-1527 (2020)
[3] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[4] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 531-545 (2004) · Zbl 1061.76044
[5] Morinishi, Y., Skew-symmetric form of the convective terms and fully conservative finite difference schemes for variable low-Mach number flows, J. Comput. Phys., 229, 276-300 (2010) · Zbl 1375.76113
[6] Kuya, Y.; Totani, K.; Kawai, S., Kinetic energy and entropy preserving schemes for compressible flows by split convective forms, J. Comput. Phys., 375, 823-853 (2018) · Zbl 1416.76182
[7] Coppola, G.; Capuano, F.; Pirozzoli, S.; de Luca, L., Numerically stable formulations of convective terms for turbulent compressible flows, J. Comput. Phys., 328, 86-104 (2019) · Zbl 1451.76081
[8] Veldman, A. E.P., A general condition for kinetic-energy preserving discretization of flow transport equations, J. Comput. Phys., 398, Article 108894 pp. (2019) · Zbl 1453.65262
[9] Veldman, A. E.P., Supraconservative finite-volume methods for the Euler equations of subsonic compressible flow, SIAM Rev., 63 (2021) · Zbl 1477.65147
[10] Feiereisen, W.; Reynolds, W.; Ferziger, J., Numerical Simulation of Compressible, Homogeneous Turbulent Shear Flow (1981), Stanford University, Department Mechanical Engineering, Technical Report TF-13
[11] Rozema, W.; Kok, J. C.; Verstappen, R. W.C. P.; Veldman, A. E.P., A symmetry-preserving discretization and regularization model for compressible flow with application to turbulent channel flow, J. Turbul., 15, 386-410 (2014)
[12] Blaisdell, G. A.; Spyropoulos, E. T.; Qin, J. H., The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 207-219 (1996) · Zbl 0858.76060
[13] Kravchenko, A. G.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys., 131, 310-322 (1997) · Zbl 0872.76074
[14] Charnyi, S.; Heister, T.; Olshanskii, M. A.; Rebholz, L. G., On conservation laws of Navier-Stokes Galerkin discretizations, J. Comput. Phys., 337, 289-308 (2017) · Zbl 1415.65222
[15] Olshanskii, M.; Rebholz, L. G., Longer time accuracy for incompressible Navier-Stokes simulations with the emac formulation, Comput. Methods Appl. Math. Eng., 372, Article 113369 pp. (2020) · Zbl 1506.76021
[16] Both, A.; Lehmkuhl, O.; Mira, D.; Ortega, M., Low-dissipation finite element strategy for low Mach number reacting flows, Comput. Fluids, 200, Article 104436 pp. (2020) · Zbl 1519.76138
[17] Capuano, F.; Vallefuoco, D., Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence, Flow Turbul. Combust., 101, 343-364 (2018)
[18] Fernandez, D. C.D. R.; Hicken, J. E.; Zingg, D. W., Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equation, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064
[19] Fernandez, D. C.D. R.; Boom, P. D.; Zingg, D. W., A generalized framework for nodal first derivative summation-by-parts operators, J. Comput. Phys., 266, 214-239 (2014) · Zbl 1311.65002
[20] Hicken, J. E.; Zingg, D. W., Summation-by-parts operators and high-order quadrature, J. Comput. Appl. Math., 237, 111-125 (2013) · Zbl 1263.65025
[21] Fisher, T. C.; Carpenter, M. H.; Nordstrom, J.; Yamaleev, N. K., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[22] Pirozzoli, S., Generalized conservative approximations of split convective derivative operators, J. Comput. Phys., 229, 7180-7190 (2010) · Zbl 1426.76485
[23] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[24] Reiss, J.; Sesterhenn, J., A conservative, skew-symmetric finite difference scheme for the compressible Navier-Stokes equations, Comput. Fluids, 101, 208-219 (2014) · Zbl 1391.76490
[25] Horiuti, K., Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow, J. Comput. Phys., 71, 343-370 (1987) · Zbl 0617.76062
[26] Layton, W.; Manica, C. C.; Neda, M.; Olshanskii, M.; Rebholz, L. G., On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comput. Phys., 228, 3433-3447 (2009) · Zbl 1161.76030
[27] Subbareddy, P.; Candler, G., A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228, 1347-1364 (2009) · Zbl 1157.76029
[28] Brouwer, J.; Reiss, J.; Sesterhenn, J., Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow, Comput. Fluids, 100, 1-12 (2014) · Zbl 1391.76463
[29] Ranocha, H.; Gassner, G. J., Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes, Commun. Appl. Math. Comput. (2021)
[30] Capuano, F.; Coppola, G.; Randez, L.; de Luca, L., Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties, J. Comput. Phys., 328, 86-94 (2017) · Zbl 1406.76066
[31] Ranocha, H.; Ketcheson, D. I., Energy stability of explicit Runge-Kutta methods for nonautonomous or nonlinear problems, SIAM J. Numer. Anal., 58, 3382-3405 (2020) · Zbl 1457.65032
[32] Ranocha, H.; Sayyari, M.; Dalcin, L.; Parson, M.; Ketcheson, D. I., Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations, SIAM J. Numer. Anal., 42, A612-A638 (2020) · Zbl 1432.76207
[33] Edoh, A. K.; Mundis, N. L.; Merkle, C. L.; Karagozian, A. R.; Sankaran, V., Comparison of artificial-dissipation and solution-filtering stabilization schemes for time-accurate simulations, J. Comput. Phys., 375, 1424-1450 (2018) · Zbl 1416.76209
[34] Raymond, W. H., High-order low-pass implicit tangent filters for use in finite area calculations, Mon. Weather Rev., 116, 2132-2141 (1988)
[35] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Rev., 24, 113-136 (1982) · Zbl 0487.65055
[36] Rubner, Y.; Tomasi, C.; Guibas, L. J., A metric for distributions with applications to image databases, (Proceedings of the 1998 IEEE International Conference on Computer Vision (1998))
[37] Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A., Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows, Comput. Fluids, 114, 84-97 (2015) · Zbl 1390.76513
[38] Lerat, A.; Falissard, F.; Sides, J., Vorticity-preserving schemes for the compressible Euler equations, J. Comput. Phys., 225, 635-651 (2007) · Zbl 1343.76030
[39] Petropolous, I.; Costes, M.; Cinnella, P., Development and analysis of high-order vorticity confinement schemes, Comput. Fluids, 156, 602-620 (2017) · Zbl 1390.76610
[40] Towery, C. A.Z.; Poludnenko, A. Y.; Urzay, J.; O’Brien, J.; Ihme, M.; Hamlington, P., Spectral kinetic energy transfer in turbulent premixed reacting flows, Phys. Rev. E, 93, Article 1 pp. (2016)
[41] Noguchi, H., Angular-momentum conservation in discretization of the Navier-Stokes equation for viscous fluids, Phys. Rev. E, 99, Article 1 pp. (2019)
[42] Mattsson, K.; Svard, M.; Nordstrom, J., Stable and accurate artificial dissipation, J. Comput. Phys., 194, 194-214 (2004)
[43] Edoh, A. K.; Sankaran, V., Boundary prescriptions for spectrally-tunable discrete filters, (2019 AIAA Aerospace Sciences Meeting (January 2019)), AIAA Paper 2019-2170
[44] Upperman, J.; Yamaleev, N. K., Entropy stable artificial dissipation based on the Brenner regularization of the Navier-Stokes equations, J. Comput. Phys., 393, 74-91 (2019) · Zbl 1452.76170
[45] Radhakrishnan, S.; Bellan, J., Explicit filtering to obtain grid-spacing-independent large-eddy simulation of compressible single-phase flow, J. Fluid Mech., 697, 399-435 (2012) · Zbl 1250.76124
[46] Gallagher, T. P.; Sankaran, V., Explicitly filtered LES of bluff body stabilized flames, (2018 AIAA Aerospace Sciences Meeting (2018)), AIAA 2018-0441
[47] Gallagher, T. P.; Edoh, A. K.; Sankaran, V., Residual and solution filtering for explicitly-filtered large-eddy simulations, (2019 AIAA Aerospace Sciences Meeting (January 2019)), AIAA Paper 2019-1645
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.