×

The ensemble conditional variance estimator for sufficient dimension reduction. (English) Zbl 07524959

Summary: Ensemble Conditional Variance Estimation (ECVE) is a novel sufficient dimension reduction (SDR) method in regressions with continuous response and predictors. ECVE applies to general non-additive error regression models and operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. It is a semiparametric forward regression model-based exhaustive sufficient dimension reduction estimation method that is shown to be consistent under mild assumptions. ECVE outperforms central subspace mean average variance estimation (csMAVE), its main competitor, under several simulation settings and in a benchmark data set analysis.

MSC:

62-XX Statistics

Software:

MAVE; ISLR
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] ADRAGNI, K. and COOK, R. D. (2009). Sufficient dimension reduction and prediction in regression. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 4385-4405. · Zbl 1185.62109 · doi:10.1098/rsta.2009.0110
[2] AMEMIYA, T. (1985). Advanced Econometrics. Harvard university press.
[3] BERNSTEIN, S. N. (1927). Theory of Probability. Moscow.
[4] BOOTHBY, W. M. (2002). An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press.
[5] CLEVELAND, W. S. and DEVLIN, S. J. (1988). Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association 83 596-610. · Zbl 1248.62054 · doi:10.1080/01621459.1988.10478639
[6] COOK, R. D. (1998). Regression Graphics: Ideas for studying regressions through graphics. Wiley, New York. · Zbl 0903.62001
[7] Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statist. Sci. 22 1-26. · Zbl 1246.62148 · doi:10.1214/088342306000000682
[8] COOK, R. D. and LI, B. (2002). Dimension reduction for conditional mean in regression. Ann. Statist. 30 455-474. · Zbl 1012.62035 · doi:10.1214/aos/1021379861
[9] FADEN, A. M. (1985). The Existence of Regular Conditional Probabilities: Necessary and Sufficient Conditions. The Annals of Probability 13 288-298. · Zbl 0593.60002
[10] FERTL, L. and BURA, E. (2021). Conditional Variance Estimator for Sufficient Dimension Reduction.
[11] FRIEDMAN, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics 19 1-67. · Zbl 0765.62064
[12] GRIFFITHS, P. and HARRIS, J. (1994). Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York Reprint of the 1978 original. · Zbl 0408.14001 · doi:10.1002/9781118032527
[13] HANG, W. and XIA, Y. (2019). MAVE: Methods for Dimension Reduction R package version 1.3.10.
[14] Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24 726-748. · Zbl 1284.62252 · doi:10.1017/S0266466608080304
[15] HEUSER, H. (1995). Analysis 2, 9 Auflage. Teubner.
[16] JAMES, G., WITTEN, D., HASTIE, T. and TIBSHIRANI, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer. · Zbl 1281.62147
[17] Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist. 40 633-643. · Zbl 0193.47201 · doi:10.1214/aoms/1177697731
[18] KARR, A. F. (1993). Probability. Springer Texts in Statistics. Springer-Verlag New York. · Zbl 0784.60001 · doi:10.1007/978-1-4612-0891-4
[19] LEAO JR., D., FRAGOSO, M. and RUFFINO, P. (2004). Regular Conditional Probability, Disintegration of Probability and Radon Spaces. Proyecciones (Antofagasta) 23 15 - 29. · doi:10.4067/S0716-09172004000100002
[20] LI, B. (2018). Sufficient dimension reduction: methods and applications with R. CRC Press, Taylor & Francis Group. · Zbl 1408.62011
[21] LI, K. C. (1991). Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association 86 316-327. · Zbl 0742.62044
[22] MA, Y. and ZHU, L. (2013). A review on dimension reduction. International Statistical Review 81 134-150. · Zbl 1416.62220 · doi:10.1111/j.1751-5823.2012.00182.x
[23] MICKEY, M. R., MUNDLE, P. B., WALKER, D. N., GLINSKI, A. M., C-E-I-R INC. and AEROSPACE RESEARCH LABORATORIES (U. S.) (1963). Test Criteria for Pearson Type III Distributions. ARL (Aerospace Research Laboratories (U.S.)). Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force.
[24] TAGARE, H. D. (2011). Notes on Optimization on Stiefel Manifolds.
[25] WANG, H. and XIA, Y. (2008). Sliced Regression for Dimension Reduction. Journal of the American Statistical Association 103 811-821. · Zbl 1306.62168 · doi:10.1198/016214508000000418
[26] XIA, Y., TONG, H., LI, W. K. and ZHU, L. X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 363-410. · Zbl 1091.62028 · doi:10.1111/1467-9868.03411
[27] YIN, X. and LI, B. (2011). Sufficient dimension reduction based on an ensemble of minimum average variance estimators. Ann. Statist. 39 3392-3416. · Zbl 1246.62141 · doi:10.1214/11-AOS950
[28] YIN, X., LI, B. and COOK, R. D. (2008). Successive direction extraction for estimating the central subspace in a Multiple-index regression. Journal of Multivariate Analysis 99 1733-1757. · Zbl 1144.62030 · doi:10.1016/j.jmva.2008.01.006
[29] ZENG, P. and ZHU, Y. (2010). An integral transform method for estimating the central mean and central subspaces. Journal of Multivariate Analysis 101 271 - 290. · Zbl 1177.62054 · doi:10.1016/j.jmva.2009.08.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.