×

A coupled discrete element material point method for fluid-solid-particle interactions with large deformations. (English) Zbl 1507.76203

Summary: Fluid-solid-particle systems such as water-soil-rock mixtures are very common in many natural processes and engineering applications. However, modelling these complex interactions is still very challenging due to their multi-scale nature. Here, we present a hybrid model that combines the advantages of the two-phase (solid and liquid) Material Point Method (MPM) on handling continuum materials with large deformations and the capability of the Discrete Element Method (DEM) on simulating the mechanical behaviours of rigid particles. Moreover, in our model, the DEM has the ability to deal with non-spherical particles. A new collision detection approach is presented in detail, and a unified DEM style contact force model is proposed to couple MPM with DEM by considering momentum exchanges between particles and continuum phases. The proposed model is validated by several numerical benchmarks, including (1) flows around a cylinder, (2) a block sliding on an inclined plane, (3) projectile impacts a granular medium, and (4) sphere impacts and penetrates into wet granular material. The results match well with analytical solutions and experimental observations, demonstrating this model’s capability to efficiently solve complex fluid-solid-particle interactions with large deformations. Finally, an example of column collapse is simulated to show future potential applications of the proposed method.

MSC:

76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schuster, R. L.; Highland, L. M., The third hans cloos lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies, Bull. Eng. Geol. Environ., 66, 1, 1-27 (2007)
[2] Roussel, N.; Geiker, M. R.; Dufour, F.; Thrane, L. N.; Szabo, P., Computational modeling of concrete flow: General overview, Cem. Concr. Res., 37, 9, 1298-1307 (2007)
[3] Iverson, R. M., The physics of debris flows, Rev. Geophys., 35, 3, 245-296 (1997)
[4] Zhang, P.; Galindo-Torres, S.; Tang, H.; Jin, G.; Scheuermann, A.; Li, L., An efficient discrete element lattice boltzmann model for simulation of particle-fluid, particle-particle interactions, Computers & Fluids, 147, 63-71 (2017) · Zbl 1390.76793
[5] Zhang, P.; Zhao, Y.; Galindo-Torres, S.; Chen, Y.; Tang, H.; Jin, G.; Scheuermann, A.; Li, L., Random walk discrete element lattice boltzmann model for scalar transport in fluid and particle flows with strict scalar mass conservation, International Journal of Heat and Mass Transfer, 187, 122577 (2022)
[6] Zhang, P.; Sun, S.; Chen, Y.; Galindo-Torres, S.; Cui, W., Coupled material point lattice boltzmann method for modeling fluid-structure interactions with large deformations, Computer Methods in Applied Mechanics and Engineering, 385, 114040 (2021) · Zbl 1502.76076
[7] Galindo-Torres, S.; Palma, S.; Quintero, S.; Scheuermann, A.; Zhang, X.; Krabbenhoft, K.; Ruest, M.; Finn, D., An airblast hazard simulation engine for block caving sites, Int. J. Rock Mech. Min. Sci., 107, 31-38 (2018)
[8] Zhang, P.; Galindo-Torres, S.; Tang, H.; Jin, G.; Scheuermann, A.; Li, L., Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles, Phys. Rev. E, 93, 6, Article 062612 pp. (2016)
[9] Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S., Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique, 66, 3, 248-273 (2016)
[10] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2013), John wiley & sons · Zbl 1279.74002
[11] Li, S.; Peng, C.; Wu, W.; Wang, S.; Chen, X.; Chen, J.; Zhou, G. G.; Chitneedi, B. K., Role of baffle shape on debris flow impact in step-pool channel: An SPH study, Landslides, 17, 9, 2099-2111 (2020)
[12] Jop, P.; Forterre, Y.; Pouliquen, O., A constitutive law for dense granular flows, Nature, 441, 7094, 727-730 (2006)
[13] Wang, W.; Feng, Q.; Yang, C., Investigation on the dynamic liquefaction responses of saturated granular soils due to dynamic compaction in coastal area, Appl. Ocean Res., 89, 273-283 (2019)
[14] Li, M.; Yu, H.; Wang, J.; Xia, X.; Chen, J., A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis, Internat. J. Numer. Methods Engrg., 102, 1, 1-21 (2015) · Zbl 1352.74465
[15] Trujillo-Vela, M. G.; Galindo-Torres, S. A.; Zhang, X.; Ramos-Cañón, A. M.; Escobar-Vargas, J. A., Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows, Comput. Geotech., 125, Article 103669 pp. (2020)
[16] Peng, C.; Wang, S.; Wu, W.; Yu, H.-s.; Wang, C.; Chen, J.-y., LOQUAT: An open-source GPU-accelerated SPH solver for geotechnical modeling, Acta Geotech., 14, 5, 1269-1287 (2019)
[17] Wu, W.; Li, H.; Su, T.; Liu, H.; Lv, Z., GPU-accelerated SPH fluids surface reconstruction using two-level spatial uniform grids, Vis. Comput., 33, 11, 1429-1442 (2017)
[18] Zhou, Q.; Xu, W.-J.; Dong, X.-Y., SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part I: Method and validation, Acta Geotech., 1-19 (2021)
[19] He, Y.; Bayly, A. E.; Hassanpour, A.; Muller, F.; Wu, K.; Yang, D., A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces, Powder Technol., 338, 548-562 (2018)
[20] Liu, X.; Wang, Y., Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material point methods with hydro-mechanical coupling, Comput. Geotech., 132, Article 103989 pp. (2021)
[21] Agarwal, S.; Karsai, A.; Goldman, D. I.; Kamrin, K., Surprising simplicity in the modeling of dynamic granular intrusion, Sci. Adv., 7, 17, eabe0631 (2021)
[22] Liang, W.; Zhao, J.; Wu, H.; Soga, K., Multiscale modeling of anchor pullout in sand, J. Geotech. Geoenviron. Eng., 147, 9, Article 04021091 pp. (2021)
[23] Bandara, S. S., Material Point Method to Simulate Large Deformation Problems in Fluid-Saturated Granular Medium (2013), University of Cambridge Cambridge: University of Cambridge Cambridge UK, (Ph.D. thesis)
[24] Liu, C.; Sun, Q.; Zhou, G. G.D., Coupling of material point method and discrete element method for granular flows impacting simulations, Internat. J. Numer. Methods Engrg., 115, 2, 172-188 (2018)
[25] Jiang, Y.; Li, M.; Jiang, C.; Alonso-Marroquin, F., A hybrid material-point spheropolygon-element method for solid and granular material interaction, Internat. J. Numer. Methods Engrg., 121, 14, 3021-3047 (2020)
[26] Take, W. A.; Bolton, M. D.; Wong, P. C.P.; Yeung, F. J., Evaluation of landslide triggering mechanisms in model fill slopes, Landslides, 1, 3, 173-184 (2004)
[27] Bui, H. H.; Nguyen, G. D., A coupled fluid-solid SPH approach to modelling flow through deformable porous media, Int. J. Solids Struct., 125, 244-264 (2017)
[28] Xu, W.-J.; Dong, X.-Y., Simulation and verification of landslide tsunamis using a 3D SPH-DEM coupling method, Comput. Geotech., 129, Article 103803 pp. (2021)
[29] Liu, C.; Sun, Q.; Jin, F.; Zhou, G. G.D., A fully coupled hydro-mechanical material point method for saturated dense granular materials, Powder Technol., 314, 110-120 (2017)
[30] Ceccato, F.; Leonardi, A.; Girardi, V.; Simonini, P.; Pirulli, M., Numerical and experimental investigation of saturated granular column collapse in air, Soils Found. (2020)
[31] Bandara, S.; Soga, K., Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214 (2015)
[32] Galindo-Torres, S. A.; Scheuermann, A.; Li, L., Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media, Phys. Rev. E, 86, 4, Article 046306 pp. (2012)
[33] Chen, Z.-P.; Zhang, X.; Sze, K. Y.; Kan, L.; Qiu, X.-M., vp material point method for weakly compressible problems, Comput. & Fluids, 176, 170-181 (2018) · Zbl 1410.76344
[34] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 2, 399-406 (1994) · Zbl 0794.76073
[35] Labuz, J. F.; Zang, A., Mohr-Coulomb failure criterion, (The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 (2012), Springer), 227-231
[36] de Souza Neto, E. A.; Peric, D.; Owen, D. R.J., Computational Methods for Plasticity: Theory and Applications (2011), John Wiley & Sons
[37] Clausen, J.; Damkilde, L.; Andersen, L., An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space, Comput. Struct., 85, 23-24, 1795-1807 (2007)
[38] Sysala, S.; Cermak, M.; Koudelka, T.; Kruis, J.; Zeman, J.; Blaheta, R., An improved return-mapping scheme for nonsmooth plastic potentials: Part I-The Haigh-Westergaard coordinates (2015), arXiv preprint arXiv:1503.03605
[39] Sulsky, D.; Chen, Z.; Schreyer, H. L., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1-2, 179-196 (1994) · Zbl 0851.73078
[40] Bardenhagen, S. G.; Kober, E. M., The generalized interpolation material point method, CMES Comput. Model. Eng. Sci., 5, 6, 477-496 (2004)
[41] Zienkiewicz, O. C.; Chan, A.; Pastor, M.; Schrefler, B.; Shiomi, T., Computational Geomechanics, vol. 613 (1999), Citeseer · Zbl 0932.74003
[42] Lei, X.; He, S.; Wu, L., Stabilized generalized interpolation material point method for coupled hydro-mechanical problems, Comput. Part. Mech., 1-20 (2020)
[43] Gray, J. M.N. T., Particle segregation in dense granular flows, Annu. Rev. Fluid Mech., 50, 407-433 (2018) · Zbl 1384.76058
[44] Zhang, P.; Dong, Y.; Galindo-Torres, S.; Scheuermann, A.; Li, L., Metaball based discrete element method for general shaped particles with round features, Computational Mechanics, 67, 4, 1243-1254 (2021) · Zbl 1487.74123
[45] Solov’yov, I. A.; Sushko, G.; Solov’yov, A. V., Mbn explorer users’ guide (2017), MesoBioNano Science Publishing Frankfurt am Main: MesoBioNano Science Publishing Frankfurt am Main Germany
[46] Galindo-Torres, S. A.; Muñoz, J. D.; Alonso-Marroquin, F., Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils, Phys. Rev. E, 82, 5, Article 056713 pp. (2010)
[47] Cundall, P. A.; Strack, O. D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[48] Mattson, W.; Rice, B. M., Near-neighbor calculations using a modified cell-linked list method, Comput. Phys. Comm., 119, 2-3, 135-148 (1999)
[49] Adami, S.; Hu, X. Y.; Adams, N. A., A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys., 231, 21, 7057-7075 (2012)
[50] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
[51] Roux, J.-N.; Combe, G., Quasistatic rheology and the origins of strain, C. R. Phys., 3, 2, 131-140 (2002)
[52] Ciamarra, M. P.; Lara, A. H.; Lee, A. T.; Goldman, D. I.; Vishik, I.; Swinney, H. L., Dynamics of drag and force distributions for projectile impact in a granular medium, Phys. Rev. Lett., 92, 19, Article 194301 pp. (2004)
[53] Nordstrom, K.; Lim, E.; Harrington, M.; Losert, W., Granular dynamics during impact, Phys. Rev. Lett., 112, 22, Article 228002 pp. (2014)
[54] Liu, X.; Wang, Y.; Li, D.-Q., Numerical simulation of the 1995 rainfall-induced Fei Tsui road landslide in Hong Kong: New insights from hydro-mechanically coupled material point method, Landslides, 17, 12, 2755-2775 (2020)
[55] Legros, F., The mobility of long-runout landslides, Eng. Geol., 63, 3-4, 301-331 (2002)
[56] Terzaghi, K.; Peck, R. B.; Mesri, G., Soil Mechanics in Engineering Practice (1996), John Wiley & Sons
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.