×

Implicit two-derivative deferred correction time discretization for the discontinuous Galerkin method. (English) Zbl 07540378

Summary: In this paper, we use an implicit two-derivative deferred correction time discretization approach and combine it with a spatial discretization of the discontinuous Galerkin spectral element method to solve (non-)linear PDEs. The resulting numerical method is high order accurate in space and time. As the novel scheme handles two time derivatives, the spatial operator for both derivatives has to be defined. This results in an extended system matrix of the scheme. We analyze this matrix regarding possible simplifications and an efficient way to solve the arising (non-)linear system of equations. It is shown how a carefully designed preconditioner and a matrix-free approach allow for an efficient implementation and application of the novel scheme. For both, linear advection and the compressible Euler equations, up to eighth order of accuracy in time is shown. Finally, it is illustrated how the method can be used to approximate solutions to the compressible Navier-Stokes equations.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
65Lxx Numerical methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Jameson, A., Evaluation of fully implicit Runge-Kutta schemes for unsteady flow calculations, J. Sci. Comput., 73, 2, 819-852 (2017) · Zbl 1397.65104
[2] Hartmann, R.; Bassi, F.; Bosnyakov, I.; Botti, L.; Colombo, A.; Crivellini, A.; Franciolini, M.; Leicht, T.; Martin, E.; Massa, F., Implicit methods, (TILDA: Towards Industrial LES/DNS in Aeronautics (2021), Springer), 11-59
[3] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput. Fluids, 118, 305-320 (2015) · Zbl 1390.76833
[4] Franciolini, M.; Crivellini, A.; Nigro, A., On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows, Comput. Fluids, 159, 276-294 (2017) · Zbl 1390.76312
[5] Renac, F.; Gérald, S.; Marmignon, C.; Coquel, F., Fast time implicit-explicit discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 251, 272-291 (2013) · Zbl 1349.76256
[6] Yan, Z.-G.; Pan, Y.; Castiglioni, G.; Hillewaert, K.; Peiró, J.; Moxey, D.; Sherwin, S. J., Nektar++: design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach, Comput. Math. Appl., 81, 351-372 (2021) · Zbl 1456.76087
[7] Wang, L.; Yu, M., Comparison of ROW, ESDIRK, and BDF2 for unsteady flows with the high-order flux reconstruction formulation, J. Sci. Comput., 83, 39 (2020) · Zbl 1440.65114
[8] Franciolini, M.; Fidkowski, K. J.; Crivellini, A., Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations, Comput. Fluids, 203, Article 104542 pp. (2020) · Zbl 1519.76143
[9] Fehn, N.; Wall, W. A.; Kronbichler, M., A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: a performance comparison of compressible and incompressible formulations for turbulent incompressible flows, Int. J. Numer. Methods Fluids, 89, 3, 71-102 (2019)
[10] Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F., Matrix-free modified extended BDF applied to the discontinuous Galerkin solution of unsteady compressible viscous flows, Int. J. Numer. Methods Fluids, 88, 12, 544-572 (2018)
[11] Pan, Y.; Yan, Z.-G.; Peiró, J.; Sherwin, S., Development of a balanced adaptive time-stepping strategy based on an implicit JFNK-DG compressible flow solver, Commun. Appl. Math. Comput. Sci. (2021)
[12] Blom, D.; Birken, P.; Bijl, H.; Kessels, F.; Meister, A.; van Zuilen, A., A comparison of Rosenbrock and ESDIRK methods combined with iterative solvers for unsteady compressible flows, Adv. Comput. Math., 42, 1401-1426 (2016) · Zbl 1388.76166
[13] Kronbichler, M., High-Performance Implementation of Discontinuous Galerkin Methods with Application in Fluid Flow, 57-115 (2021), Springer International Publishing: Springer International Publishing Cham · Zbl 1478.76053
[14] Beck, A.; Gao, M.; Kempf, D.; Kopper, P.; Krais, N.; Kurz, M.; Zeifang, J.; Munz, C.-D., Increasing the flexibility of the high order discontinuous Galerkin framework FLEXI towards large scale industrial applications, (High Performance Computing in Science and Engineering’20 (2021), Springer), 343-358
[15] Hairer, E.; Wanner, G., Multistep-multistage-multiderivative methods for ordinary differential equations, Computing (Arch. Elektron. Rechnen), 11, 3, 287-303 (1973) · Zbl 0271.65048
[16] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[17] Kastlunger, K.; Wanner, G., On Turan type implicit Runge-Kutta methods, Computing, 9, 317-325 (1972) · Zbl 0258.65078
[18] Christlieb, A. J.; Güçlü, Y.; Seal, D. C., The Picard integral formulation of weighted essentially nonoscillatory schemes, SIAM J. Numer. Anal., 53, 4, 1833-1856 (2015) · Zbl 1317.65169
[19] Jiang, Y.; Shu, C.-W.; Zhang, M., An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws, SIAM J. Sci. Comput., 35, 2, A1137-A1160 (2013) · Zbl 1266.65144
[20] Moe, S. A.; Rossmanith, J. A.; Seal, D. C., Positivity-preserving discontinuous Galerkin methods with Lax-Wendroff time discretizations, J. Sci. Comput., 71, 1, 44-70 (2017) · Zbl 1462.65152
[21] Qiu, J.; Dumbser, M.; Shu, C.-W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Eng., 194, 42-44, 4528-4543 (2005) · Zbl 1093.76038
[22] Zorío, D.; Baeza, A.; Mulet, P., An approximate Lax-Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws, J. Sci. Comput., 71, 246-273 (2017) · Zbl 1387.65094
[23] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1, 609-618 (2002) · Zbl 1024.76028
[24] Busto, S.; Chiocchetti, S.; Dumbser, M.; Gaburro, E.; Peshkov, I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
[25] Seal, D.; Güçlü, Y.; Christlieb, A., High-order multiderivative time integrators for hyperbolic conservation laws, J. Sci. Comput., 60, 101-140 (2014) · Zbl 1304.65223
[26] Ji, X.; Zhao, F.; Shyy, W.; Xu, K., A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods, J. Comput. Phys., 356, 150-173 (2018) · Zbl 1380.76061
[27] He, Z.; Gao, F.; Tian, B.; Li, J., Implementation of finite difference weighted compact nonlinear schemes with the two-stage fourth-order accurate temporal discretization, Commun. Comput. Phys., 27, 1470-1484 (2020) · Zbl 1473.65107
[28] Pan, L.; Xu, K.; Li, Q.; Li, J., An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 326, 197-221 (2016) · Zbl 1373.76032
[29] Chouchoulis, J.; Schütz, J.; Zeifang, J., Jacobian-free explicit multiderivative Runge-Kutta methods for hyperbolic conservation laws, J. Sci. Comput., 90, 96 (2022) · Zbl 1486.65098
[30] Tsai, A.; Chan, R.; Wang, S., Two-derivative Runge-Kutta methods for PDEs using a novel discretization approach, Numer. Algorithms, 65, 687-703 (2014) · Zbl 1291.65287
[31] Carrillo, H.; Parés, C.; Zorío, D., Lax-Wendroff approximate Taylor methods with fast and optimized weighted essentially non-oscillatory reconstructions, J. Sci. Comput., 86, 1, 1-41 (2021) · Zbl 1475.65065
[32] Schütz, J.; Seal, D., An asymptotic preserving semi-implicit multiderivative solver, Appl. Numer. Math., 160, 84-101 (2021) · Zbl 1459.65159
[33] Jaust, A.; Schütz, J.; Seal, D. C., Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws, J. Sci. Comput., 69, 866-891 (2016) · Zbl 1370.65053
[34] Schütz, J.; Seal, D.; Jaust, A., Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous Galerkin spatial discretizations, J. Sci. Comput., 73, 1145-1163 (2017) · Zbl 1381.65078
[35] Jaust, A., Novel implicit unconditionally stable time-stepping for DG-type methods and related topics (2018), Hasselt University, Ph.D. thesis
[36] Schütz, J.; Seal, D. C.; Zeifang, J., Parallel-in-time high-order multiderivative IMEX solvers, J. Sci. Comput., 90, 54, 1-33 (2022) · Zbl 1481.65105
[37] Zeifang, J.; Schütz, J.; Seal, D., Stability of implicit multiderivative deferred correction methods, BIT Numer. Math. (2022) · Zbl 1507.65121
[38] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[39] Reed, W.; Hill, T., Triangular mesh methods for the neutron transport equation (1973), Los Alamos Scientific Laboratory, Tech. Rep.
[40] Shu, C.-W., A brief survey on discontinuous Galerkin methods in computational fluid dynamics, Adv. Mech., 43, 541-554 (2013)
[41] Hindenlang, F.; Gassner, G.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[42] Krais, N.; Beck, A.; Bolemann, T.; Frank, H.; Flad, D.; Gassner, G.; Hindenlang, F.; Hoffmann, M.; Kuhn, T.; Sonntag, M., FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws, Comput. Math. Appl., 81, 186-219 (2021) · Zbl 1461.76347
[43] Higham, N. J., Accuracy and Stability of Numerical Algorithms (2002), SIAM · Zbl 1011.65010
[44] Vangelatos, S., On the efficiency of implicit discontinuous Galerkin spectral element methods for the unsteady compressible Navier-Stokes equations (2019), University of Stuttgart, Ph.D. thesis
[45] Zeifang, J., A Discontinuous Galerkin Method for Droplet Dynamics in Weakly Compressible Flows (2020), Verlag Dr. Hut
[46] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., PETSc users manual (2010), Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.1
[47] Kaiser, K.; Schütz, J., A high-order method for weakly compressible flows, Commun. Comput. Phys., 22, 4, 1150-1174 (2017) · Zbl 1488.35436
[48] Zeifang, J.; Schütz, J.; Kaiser, K.; Beck, A.; Lukáčová-Medvid’ová, M.; Noelle, S., A novel full-Euler low Mach number IMEX splitting, Commun. Comput. Phys., 27, 292-320 (2020) · Zbl 1518.65102
[49] Carpenter, M.; Kennedy, C., Fourth-order 2N-storage Runge-Kutta schemes (1994), NASA Langley Research Center, Tech. Rep.
[50] Zeifang, J.; Kaiser, K.; Beck, A.; Schütz, J.; Munz, C.-D., Efficient high-order discontinuous Galerkin computations of low Mach number flows, Commun. Appl. Math. Comput. Sci., 13, 243-270 (2018) · Zbl 1408.65091
[51] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[52] Zeifang, J.; Beck, A., A low Mach number IMEX flux splitting for the level set ghost fluid method, Commun. Appl. Math. Comput. Sci., 1-29 (2021)
[53] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics (1997)), 99-108
[54] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[55] Hindenlang, F., Mesh curving techniques for high order parallel simulations on unstructured meshes (2014), University of Stuttgart, Ph.D. thesis
[56] Ortleb, S., A comparative Fourier analysis of discontinuous Galerkin schemes for advection-diffusion with respect to BR1, BR2, and local discontinuous Galerkin diffusion discretization, Math. Models Methods Appl. Sci., 43, 13, 7841-7863 (2020) · Zbl 1448.65171
[57] Ghia, U.; Ghia, K. N.; Shin, C., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[58] Rajani, B.; Kandasamy, A.; Majumdar, S., Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Model., 33, 3, 1228-1247 (2009) · Zbl 1168.76305
[59] Meneghini, J.; Saltara, F.; Siqueira, C.; Ferrari, J., Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements, J. Fluids Struct., 15, 2, 327-350 (2001)
[60] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103
[61] Kennedy, C. A.; Carpenter, M. H., Diagonally implicit Runge-Kutta methods for stiff ODEs, Appl. Numer. Math., 146, 221-244 (2019) · Zbl 1437.65061
[62] Brachet, M. E.; Meiron, D. I.; Orszag, S. A.; Nickel, B.; Morf, R. H.; Frisch, U., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033
[63] Birken, P.; Gassner, G.; Haas, M.; Munz, C.-D., Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations, J. Comput. Phys., 240, 20-35 (2013) · Zbl 1426.76520
[64] Rueda-Ramírez, A. M.; Ferrer, E.; Kopriva, D. A.; Rubio, G.; Valero, E., A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations, J. Comput. Phys., 426, Article 109953 pp. (2021) · Zbl 07510067
[65] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 1, 16-32 (1996) · Zbl 0845.65021
[66] Christlieb, A. J.; Macdonald, C. B.; Ong, B. W.; Spiteri, R. J., Revisionist integral deferred correction with adaptive step-size control, Commun. Appl. Math. Comput. Sci., 10, 1, 1-25 (2015) · Zbl 1312.65110
[67] Birken, P.; Gassner, G. J.; Versbach, L. M., Subcell finite volume multigrid preconditioning for high-order discontinuous Galerkin methods, Int. J. Comput. Fluid Dyn., 33, 9, 353-361 (2019) · Zbl 07474499
[68] Abdelfattah, A.; Anzt, H.; Boman, E. G.; Carson, E.; Cojean, T.; Dongarra, J.; Gates, M.; Grützmacher, T.; Higham, N. J.; Li, S., A survey of numerical methods utilizing mixed precision arithmetic (2020), arXiv preprint
[69] Toro, E. F.; Vázquez-Cendón, M. E., Flux splitting schemes for the Euler equations, Comput. Fluids, 70, 1-12 (2012) · Zbl 1365.76243
[70] Toro, E.; Titarev, V., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc., Math. Phys. Eng. Sci., 458, 2018, 271-281 (2002) · Zbl 1019.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.