×

Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: synchronization stability criteria. (English) Zbl 1525.34013


MSC:

34A08 Fractional ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
93C40 Adaptive control/observation systems

Software:

DFOC; sysdfod
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L, Stability and synchronization of fractional-order memristive neural networks with multiple delays, Neural Networks, 94, 76-85 (2017) · Zbl 1437.93098 · doi:10.1016/j.neunet.2017.06.012
[2] L, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35, 1273-1290 (1988) · doi:10.1109/31.7601
[3] M, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst., Man, Cybernetics, 5, 815-826 (1983) · Zbl 0553.92009
[4] J, A hidden mode observation approach to finite-time SOFC of Markovian switching with quantization, Nonlinear Dynam., 100, 509-521 (2020) · Zbl 1434.93019 · doi:10.1007/s11071-020-05501-0
[5] C, Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms, Can. Math. Bull., 63, 405-422 (2020) · Zbl 1441.34088 · doi:10.4153/S0008439519000511
[6] J, Quantized nonstationary filtering of network-based Markov switching RSNSs: A multiple hierarchical structure strategy, IEEE Transactions on Automatic Control, 65, 4816-4823 (2020) · Zbl 07320055 · doi:10.1109/TAC.2019.2958824
[7] L. Duan, M. Shi, C. Huang, X. Fang, Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations, <i>Chaos, Solitons Fractals</i>, (2020), DOI: <a href=“http://dx.doi.org/10.1016/j.chaos.2020.110386” target=“_blank”>10.1016/j.chaos.2020.110386</a>.
[8] M, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22, 650-659 (2015) · Zbl 1333.34007 · doi:10.1016/j.cnsns.2014.10.008
[9] A, Fractional-order circuits and systems: An emerging interdisciplinary research area, IEEE Circ Syst. Mag, 10, 40-50 (2010)
[10] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, <i>Mittag-Leffler Functions, Related Topics and Applications</i>, Springer, 2014. · Zbl 1309.33001
[11] C, Synchronous oscillations in neuronal systems: Mechanisms and functions, J. Comput. Neurosci., 1, 11-38 (1994) · doi:10.1007/BF00962716
[12] B, Asymptotical stability of fractional order systems with time delay via an integral inequality, IET Control Theory Appl., 12, 1748-1754 (2018) · doi:10.1049/iet-cta.2017.1144
[13] H, Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, 154, 15-23 (2015) · doi:10.1016/j.neucom.2014.12.031
[14] C. Song, S. Fei, J. Cao, C. Huang, Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control. <i>Mathematics</i>, <b>7</b> (2019), 599. Available from: <a href=“https://doi.org/10.3390/math7070599” target=“_blank”>https://doi.org/10.3390/math7070599</a>.
[15] C. Huang, X. Zhao, J. Cao, F. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, <i>Nonlinearity</i>, <b>33</b>(12) (2020), 6819-6834. · Zbl 1456.34079
[16] C, Asymptotic behavior for a class of population dynamics, AIMS Math., 5, 3378-3390 (2020) · Zbl 1484.92073 · doi:10.3934/math.2020218
[17] H. Yang, Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator, <i>AIMS Math</i>., <b>6</b> (2020), 1865-1879. · Zbl 1485.34174
[18] C, New results on asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Diff. Eq., 2020, 1-17 (2020) · doi:10.1186/s13662-019-2438-0
[19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, <i>Theory and applications of fractional differential equations</i>, Amsterdam: Elsevier B.V, 2006. · Zbl 1092.45003
[20] A, The Kronecker product and stochastic automata networks, J. Comput. Appl. Math., 167, 429-447 (2004) · Zbl 1104.68062 · doi:10.1016/j.cam.2003.10.010
[21] N. Laskin, Fractional market dynamics, <i>Physica A</i>, <b>287</b> (2000), 482-492.
[22] S, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 444, 49-62 (2015) · Zbl 1400.93142
[23] B. Li, N. Wang, X. Ruan, Q. Pan, Pinning and adaptive synchronization of fractional-order complex dynamical networks with and without time-varying delay, <i>Adv. Differ. Eq.</i>, (2018). Available from: <a href=“https://doi.org/10.1186/s13662-017-1454-1” target=“_blank”>https://doi.org/10.1186/s13662-017-1454-1</a>. · Zbl 1445.34018
[24] H, Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks, Chaos, Solitons Fractals, 92, 142-149 (2016) · Zbl 1372.34086 · doi:10.1016/j.chaos.2016.09.023
[25] Y, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[26] R, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[27] M. L. Morgado, N. J. Ford, P. M. Lima, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., <b>252</b> (2013), 159-168. · Zbl 1291.65214
[28] I. Petras, <i>Fractional-order nonlinear systems: Modeling, analysis and simulation</i>, Springer Berlin, 2011. · Zbl 1228.34002
[29] I. Podlubny, <i>Fractional differential equations</i>, San Diego California: Academic Press, 1999. · Zbl 0924.34008
[30] C, Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays, Neural Comput. Appl., 29, 1309-1320 (2018) · doi:10.1007/s00521-016-2641-9
[31] G, Pinning synchronization of fractional general complex dynamical networks with time Delay, IFAC Papers Online, 50-1, 8058-8065 (2017)
[32] X. Ruan, A. Wu, Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control, <i>Adv. Diff. Eq.</i>, <b>359</b> (2017). Available from: <a href=“https://doi.org/10.1186/s13662-017-1417-6” target=“_blank”>https://doi.org/10.1186/s13662-017-1417-6</a>. · Zbl 1444.34015
[33] N, Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional derivative, Alex. Eng. J., 59, 2083-2090 (2020) · doi:10.1016/j.aej.2020.01.008
[34] W, Synchronization and robust synchronization for fractional-order coupled neural networks, IEEE Access, 5, 12439-12448 (2017) · doi:10.1109/ACCESS.2017.2721950
[35] Q, Finite-time synchronization of coupled Cohen-Grossberg neural networks with and without coupling delays, J. Franklin Inst., 355, 4379-4403 (2018) · Zbl 1390.93073 · doi:10.1016/j.jfranklin.2018.04.023
[36] P, Pattern formation properties of autonomous cellular neural networks, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 42, 757-774 (1995) · doi:10.1109/81.473585
[37] G, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Networks, 73, 36-46 (2016) · Zbl 1398.34110 · doi:10.1016/j.neunet.2015.09.012
[38] L. Wan, A. Wu, Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument, <i>Advances Diff. Eq.</i>, (2017). Available from: <a href=“https//doi.org/10.1186/s13662-017-1368-y” target=“_blank”>https//doi.org/10.1186/s13662-017-1368-y</a>. · Zbl 1422.92011
[39] F, Asymptotic stability of delayed fractional-order neural networks with impulsive effects, Neurocomputing, 154, 239-244 (2015) · doi:10.1016/j.neucom.2014.11.068
[40] F, Exponential synchronization of fractional-order complex networks via pinning impulsive control, Nonlinear Dyn., 82, 1979-1987 (2015) · Zbl 1348.34094 · doi:10.1007/s11071-015-2292-x
[41] L, Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies, IEEE Trans. Syst., Man, Cybernetics: Syst., 46, 1109-1120 (2016) · doi:10.1109/TSMC.2015.2476491
[42] Y, Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links, Appl. Math. Comput., 389, 125498 (2020) · Zbl 1508.93328
[43] X, Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays, Chaos, Solitons Fractals, 110, 105-123 (2018) · Zbl 1391.93168 · doi:10.1016/j.chaos.2018.03.016
[44] H, Analysis and pinning control for generalized synchronization of delayed coupled neural networks with different dimensional nodes, J. Franklin Inst., 355, 5968-5997 (2018) · Zbl 1451.93192 · doi:10.1016/j.jfranklin.2018.05.055
[45] H, Fixed-time synchronization of coupled Cohen-Grossberg neural networks with and without parameter uncertainties, Neurocomputing, 315, 157-168 (2018) · doi:10.1016/j.neucom.2018.07.013
[46] A. Pratap, R. Raja, J. Cao, C. Huang, M. Niezabitowski, O. Bagdasar, Stability of discrete-time fractional-order time-delayed neural networks in complex field, <i>Math. Methods Appl. Sci.</i>, (2020). Available from: <a href=“https://doi.org/10.1002/mma.6745” target=“_blank”>https://doi.org/10.1002/mma.6745</a>. · Zbl 1479.39020
[47] X. M. Zhang, S. Y. Sheng, G. P. Lu, Y. F. Zheng, Synchronization for arrays of coupled jumping delayed neural networks and its application to image encryption, <i>Proceeding of the \(56\) th Annual Conference on Decision and Control</i>, 2017.
[48] J, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication, Circuits Syst. Signal Process., 24, 599-613 (2005) · Zbl 1102.94010 · doi:10.1007/s00034-005-2410-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.