×

Gaussoids are two-antecedental approximations of Gaussian conditional independence structures. (English) Zbl 1493.62020

Ann. Math. Artif. Intell. 90, No. 6, 645-673 (2022); correction ibid. 90, No. 6, 675-676 (2022).
Summary: The gaussoid axioms are conditional independence inference rules which characterize regular Gaussian CI structures over a three-element ground set. It is known that no finite set of inference rules completely describes regular Gaussian CI as the ground set grows. In this article we show that the gaussoid axioms logically imply every inference rule of at most two antecedents which is valid for regular Gaussians over any ground set. The proof is accomplished by exhibiting for each inclusion-minimal gaussoid extension of at most two CI statements a regular Gaussian realization. Moreover we prove that all those gaussoids have rational positive-definite realizations inside every \(\varepsilon\)-ball around the identity matrix. For the proof we introduce the concept of algebraic Gaussians over arbitrary fields and of positive Gaussians over ordered fields and obtain the same two-antecedental completeness of the gaussoid axioms for algebraic and positive Gaussians over all fields of characteristic zero as a byproduct.

MSC:

62B10 Statistical aspects of information-theoretic topics
62R01 Algebraic statistics
14P10 Semialgebraic sets and related spaces

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abo Khamis, M., Kolaitis, P.G., Ngo, H.Q., Suciu, D.: Decision problems in information theory. arXiv:2004.08783 (2020)
[2] Boege, T.: Incidence geometry in the projective plane via almost-principal minors of symmetric matrices. arXiv:2103.02589 (2021)
[3] Boege, T.; D’Alì, A.; Kahle, T.; Sturmfels, B., The geometry of gaussoids, Found. Comput. Math., 19, 4, 775-812 (2019) · Zbl 1453.13076 · doi:10.1007/s10208-018-9396-x
[4] Boege, T.; Kahle, T., Construction methods for gaussoids, Kybernetika, 56, 6, 1045-1062 (2020) · Zbl 1513.05058 · doi:10.14736/kyb-2020-6-1045
[5] Bouckaert, R.; Hemmecke, R.; Lindner, S.; Studený, M., Efficient algorithms for conditional independence inference, J. Mach. Learn. Res., 11, 3453-3479 (2010) · Zbl 1242.62129
[6] Cox, DA; Little, J.; O’Shea, D., Ideals, varieties, and algorithms, fourth edn. Undergraduate Texts in Mathematics (2015), Berlin: Springer, Berlin · Zbl 1335.13001 · doi:10.1007/978-3-319-16721-3
[7] Dawid, AP, Conditional independence in statistical theory, J. Roy. Statist. Soc. Ser. B, 41, 1, 1-31 (1979) · Zbl 0408.62004
[8] Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more variables. arXiv:0910.0284 (2010)
[9] Drton, M., Xiao, H.: Smoothness of gaussian conditional independence models. In: Algebraic Methods in Statistics and Probability II, Contemporary Mathematics. doi:10.1090/conm/516/10173, vol. 516, pp 155-177. American Mathematical Society (2010) · Zbl 1196.62055
[10] Geiger, D.; Pearl, J., Logical and algorithmic properties of conditional independence and graphical models, Ann. Stat., 21, 4, 2001-2021 (1993) · Zbl 0814.62006 · doi:10.1214/aos/1176349407
[11] Geiger, D.; Pearl, J., Logical and algorithmic properties of conditional independence and graphical models, Ann. Statist., 21, 4, 2001-2021 (1993) · Zbl 0814.62006 · doi:10.1214/aos/1176349407
[12] Gong, Z.; Aldeen, M.; Elsner, L., A note on a generalized Cramer’s rule, Linear Algebra Appl., 340, 1, 253-254 (2002) · Zbl 1003.15002 · doi:10.1016/S0024-3795(01)00469-4
[13] Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[14] Holtz, O., Sturmfels, B.: Hyperdeterminantal relations among symmetric principal minors. J. Algebra 316(2). doi:10.1016/j.jalgebra.2007.01.039 (2007) · Zbl 1130.15005
[15] Lauritzen, S., Graphical models., Oxford Statistical Science series, vol. 17 (1996), Oxford: Oxford University Press, Oxford · Zbl 0907.62001
[16] Lauritzen, S.; Sadeghi, K., Unifying Markov properties for graphical models, Ann. Statist., 46, 5, 2251-2278 (2018) · Zbl 1408.62122 · doi:10.1214/17-AOS1618
[17] Lněnička, R.; Matúš, F., On Gaussian conditional independence structures, Kybernetika, 43, 3, 327-342 (2007) · Zbl 1144.60302
[18] Marshall, M.: Positive polynomials and sums of squares, Mathematical Surveys and monographs, vol. 146 American Mathematical Society (2008) · Zbl 1169.13001
[19] Matúš, F., Probabilistic conditional independence structures and matroid theory: background, Int. J. Gen. Syst., 22, 185-196 (1994) · Zbl 0797.60005 · doi:10.1080/03081079308935205
[20] Matúš, F., Conditional independence structures examined via minors, Ann. Math. Artif. Intell., 21, 1, 99-30 (1997) · Zbl 0888.68097 · doi:10.1023/A:1018957117081
[21] Matúš, F., Towards classification of semigraphoids, Discrete Math., 277, 1, 115-145 (2004) · Zbl 1059.68082 · doi:10.1016/S0012-365X(03)00155-9
[22] Matúš, F.: Conditional independences in gaussian vectors and rings of polynomials. In: Kern-Isberner, G., Rödder, W., Kulmann, F. (eds.) Conditionals, Information, and Inference, pp. 152-161. Springer (2005) · Zbl 1111.68685
[23] Matúš, F., Conditional independences among four random variables. II, Combin. Probab. Comput., 4, 4, 407-417 (1995) · Zbl 0846.60004 · doi:10.1017/S0963548300001747
[24] Matúš, F., Conditional independences among four random variables. III. Final conclusion, Combin. Probab. Comput., 8, 3, 269-276 (1999) · Zbl 0941.60004 · doi:10.1017/S0963548399003740
[25] Matúš, F.; Studený, M., Conditional independences among four random variables, I. Combin. Probab. Comput., 4, 3, 269-278 (1995) · Zbl 0839.60004 · doi:10.1017/S0963548300001644
[26] Niepert, M.; Gyssens, M.; Sayrafi, B.; Van Gucht, D., On the conditional independence implication problem: a lattice-theoretic approach, Artif. Intell., 202, 29-51 (2013) · Zbl 1329.68250 · doi:10.1016/j.artint.2013.06.005
[27] Oxley, J.: Matroid theory, Oxford Graduate Texts in Mathematics, 2nd edn., vol. 21. Oxford University Press, Oxford (2011). doi:10.1093/acprof:oso/9780198566946.001.0001 · Zbl 1254.05002
[28] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. The Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann, San Mateo CA (1988)
[29] Pearl, J., Paz, A.: GRAPHOIDS: A Graph-based logic for reasoning about relevance relations, or When would x tell you more about y if you already know z. Tech. Rep. CSD-850038 UCLA Computer Science Department (1985)
[30] Šimeček, P.: Classes of Gaussian, discrete and binary representable independence models have no finite characterization. In: Proceedings of Prague Stochastics, vol. 400, pp. 622-631 (2006)
[31] Šimeček, P.: Gaussian representation of independence models over four random variables. In: COMPSTAT Conference (2006)
[32] Šimeček, P.: A short note on discrete representability of independence models. In: Proccedings of the European Workshop on Probabilistic Graphical Models, pp. 287-292 (2006)
[33] Studený, M.: Probabilistic conditional independence structures. Information science and statistics springer (2005) · Zbl 1070.62001
[34] Studený, M.: Conditional independence and basic markov properties. In: Maathuis, M., Drton, M., Lauritzen, S., Wainwright, M. (eds.) Handbook of graphical models, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, pp. 3-38. CRC Press (2019) · Zbl 1442.62112
[35] Studený, M.: Conditional independence relations have no finite complete characterization. In: Information Theory, Statistical Decision Functions and Random Processes, Vol. B, pp. 377-396. Kluwer (1992) · Zbl 0764.60004
[36] Studený, M.: Semigraphoids are two-antecedental approximations of stochastic conditional independence models. In: De Mantaras, R.L., Poole, D., Proceedings, Uncertainty (eds.) , pp 546-552, Morgan Kaufmann (1994)
[37] Sullivant, S., Gaussian conditional independence relations have no finite complete characterization, J. Pure Appl. Algebra, 213, 8, 1502-1506 (2009) · Zbl 1162.13014 · doi:10.1016/j.jpaa.2008.11.026
[38] Sullivant, S.: Algebraic statistics, Graduate Studies in Mathematics, vol. 194 American Mathematical Society (2018) · Zbl 1408.62004
[39] Verma, T., Pearl, J.: An algorithm for deciding if a set of observed independencies has a causal explanation. In: Dubois, D., Wellman, M.P., D’Ambrosio, B., Smets, P. (eds.) Uncertainty in Artificial Intelligence. doi:10.1016/B978-1-4832-8287-9.50049-9, pp 323-330, Morgan Kaufmann (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.