×

Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data. (English) Zbl 1498.62305

Summary: We analyse the spatio-temporal distribution of visitors’ stops by touristic attractions in Palermo (Italy), using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong degree of clustering in the data, we then formulate a more complex model, fitting a spatio-temporal log-Gaussian Cox process to the point process on the linear network, addressing the problem of the choice of the most appropriate distance metric.

MSC:

62P20 Applications of statistics to economics
62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

R; stlnpp; CompRandFld; stpp
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ABBRUZZO, A., FERRANTE, M. and DE CANTIS, S. (2021). A pre-processing and network analysis of GPS tracking data. Spatial Econ. Anal. 16 217-240.
[2] ANG, Q. W., BADDELEY, A. and NAIR, G. (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scand. J. Stat. 39 591-617. · Zbl 1319.62197 · doi:10.1111/j.1467-9469.2011.00752.x
[3] BADDELEY, A., RUBAK, E. and TURNER, R. (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC.
[4] BADDELEY, A., BÁRÁNY, I. and SCHNEIDER, R. (2006). Stochastic Geometry: Lectures Given at the CIME Summer School Held in Martina Franca, Italy, September \(13-18, 2004\). Springer.
[5] Baddeley, A. J., MØller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54 329-350. · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[6] BADDELEY, A., CHANG, Y.-M., SONG, Y. and TURNER, R. (2012). Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Stat. Interface 5 221-236. · Zbl 1383.62094 · doi:10.4310/SII.2012.v5.n2.a7
[7] BADDELEY, A., NAIR, G., RAKSHIT, S. and MCSWIGGAN, G. (2017). “Stationary” point processes are uncommon on linear networks. Stat 6 68-78. · doi:10.1002/sta4.135
[8] BADDELEY, A., NAIR, G., RAKSHIT, S., MCSWIGGAN, G. and DAVIES, T. M. (2021). Analysing point patterns on networks—a review. Spat. Stat. 42 Paper No. 100435, 35. · doi:10.1016/j.spasta.2020.100435
[9] BRIX, A. and DIGGLE, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 823-841. · Zbl 0996.62076 · doi:10.1111/1467-9868.00315
[10] BUTZ, W. P. and TORREY, B. B. (2006). Some frontiers in social science. Science 312 1898-1900.
[11] CRONIE, O., MORADI, M. and MATEU, J. (2020). Inhomogeneous higher-order summary statistics for point processes on linear networks. Stat. Comput. 30 1221-1239. · Zbl 1452.62402 · doi:10.1007/s11222-020-09942-w
[12] DAVIES, T. M. and HAZELTON, M. L. (2013). Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes. Stat. Neerl. 67 355-389. · doi:10.1111/stan.12011
[13] DE CANTIS, S., FERRANTE, M., KAHANI, A. and SHOVAL, N. (2016). Cruise passengers’ behavior at the destination: Investigation using GPS technology. Tour. Manag. 52 133-150.
[14] Diggle, P. J. (2014). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 3rd ed. Monographs on Statistics and Applied Probability 128. CRC Press, Boca Raton, FL. · Zbl 1435.62004
[15] ELGETHUN, K., FENSKE, R. A., YOST, M. G. and PALCISKO, G. J. (2003). Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument. Environ. Health Perspect. 111 115-122.
[16] ESTER, M., KRIEGEL, H.-P., SANDER, J., XU, X. et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd 96 226-231.
[17] GABRIEL, E. and DIGGLE, P. J. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl. 63 43-51. · doi:10.1111/j.1467-9574.2008.00407.x
[18] GABRIEL, E., DIGGLE, P. J., ROWLINGSON, B. and RODRIGUEZ-CORTES, F. J. (2021). stpp: Space-time point pattern simulation, visualisation and analysis. R package version 2.0-5.
[19] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Monographs on Statistics and Applied Probability 43. CRC Press, London. · Zbl 0747.62061
[20] ILLIAN, J. B. and HENDRICHSEN, D. K. (2010). Gibbs point process models with mixed effects. Environmetrics 21 341-353. · doi:10.1002/env.1008
[21] Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice. Wiley, Chichester. · Zbl 1197.62135
[22] KALLENBERG, O. (1984). An informal guide to the theory of conditioning in point processes. Int. Stat. Rev. 52 151-164. · Zbl 0552.60041 · doi:10.2307/1403098
[23] LI, Z. and WOOD, S. N. (2020). Faster model matrix crossproducts for large generalized linear models with discretized covariates. Stat. Comput. 30 19-25. · Zbl 1436.62352 · doi:10.1007/s11222-019-09864-2
[24] MATEU, J., MORADI, M. and CRONIE, O. (2020a). Spatio-temporal point patterns on linear networks: Pseudo-separable intensity estimation. Spat. Stat. 37 100400, 11. · Zbl 1452.62402 · doi:10.1016/j.spasta.2019.100400
[25] MORADI, M., CRONIE, O. and MATEU, J. (2020b). stlnpp: Spatio-temporal analysis of point patterns on linear networks. R package version 0.3-7. · Zbl 1452.62402
[26] McSwiggan, G., Baddeley, A. and Nair, G. (2017). Kernel density estimation on a linear network. Scand. J. Stat. 44 324-345. · Zbl 1422.62091 · doi:10.1111/sjos.12255
[27] MØLLER, J., SYVERSVEEN, A. R. and WAAGEPETERSEN, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451-482. · Zbl 0931.60038 · doi:10.1111/1467-9469.00115
[28] MORADI, M. M. and MATEU, J. (2020). First- and second-order characteristics of spatio-temporal point processes on linear networks. J. Comput. Graph. Statist. 29 432-443. · Zbl 07499286 · doi:10.1080/10618600.2019.1694524
[29] MORADI, M. M., CRONIE, O., RUBAK, E., LACHIEZE-REY, R., MATEU, J. and BADDELEY, A. (2019). Resample-smoothing of Voronoi intensity estimators. Stat. Comput. 29 995-1010. · Zbl 1430.62073 · doi:10.1007/s11222-018-09850-0
[30] OKABE, A. and SUGIHARA, K. (2012). Spatial Analysis Along Networks: Statistical and Computational Methods. Wiley. · Zbl 1256.62056
[31] PADOAN, S. A. and BEVILACQUA, M. (2015). Analysis of random fields using CompRandFld.
[32] R CORE TEAM (2021). \(R\): A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[33] RAKSHIT, S., BADDELEY, A. and NAIR, G. (2019). Efficient code for second order analysis of events on a linear network. J. Stat. Softw. 90 1-37.
[34] RAKSHIT, S., NAIR, G. and BADDELEY, A. (2017). Second-order analysis of point patterns on a network using any distance metric. Spat. Stat. 22 129-154. · doi:10.1016/j.spasta.2017.10.002
[35] SHOVAL, N., KAHANI, A., DE CANTIS, S. and FERRANTE, M. (2020). Impact of incentives on tourist activity in space-time. Ann. Tour. Res. 80 102846.
[36] SIINO, M., ADELFIO, G. and MATEU, J. (2018). Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes. Stoch. Environ. Res. Risk Assess. 32 3525-3539.
[37] SILVERMAN, B. W. (2018). Density Estimation for Statistics and Data Analysis. Routledge.
[38] TAMAYO-URIA, I., MATEU, J. and DIGGLE, P. J. (2014). Modelling of the spatio-temporal distribution of rat sightings in an urban environment. Spat. Stat. 9 192-206. · doi:10.1016/j.spasta.2014.03.005
[39] van Lieshout, M. N. M. (2000). Markov Point Processes and Their Applications. Imperial College Press, London. · Zbl 0968.60005 · doi:10.1142/9781860949760
[40] WOOD, S. N. (2003). Thin plate regression splines. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 95-114. · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
[41] WOOD, S. N., GOUDE, Y. and SHAW, S. (2015). Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C. Appl. Stat. 64 139-155. · doi:10.1111/rssc.12068
[42] WOOD, S. N., LI, Z., SHADDICK, G. and AUGUSTIN, N. H. (2017). Generalized additive models for gigadata: Modeling the U.K. Black Smoke Network daily data. J. Amer. Statist. Assoc. 112 1199-1210. · doi:10.1080/01621459.2016.1195744
[43] ZENK, S. N., SCHULZ, A. J., MATTHEWS, S. A., ODOMS-YOUNG, A., WILBUR, J., WEGRZYN, L., GIBBS, K., BRAUNSCHWEIG, C. and STOKES, C. (2011). Activity space environment and dietary and physical activity behaviors: A pilot study. Health Place 17 1150-1161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.