×

Ein Fixpunktsatz. (German) Zbl 0012.30803


PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Vgl. Schauder, Der Fixpunktsatz in Funktionalräumen. Studia Mathematica2 (1930), S. 171.
[2] Vgl. S. Banach, Théorie des opérations linéaires. Warszawa, 1932, Kap. II.
[3] Vgl. A. Kolmogoroff, Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Studia Mathematica5 (1934), S. 29. · Zbl 0010.18202
[4] Siehe P. Alexandroff und P. Urysohn, Zur Theorie der topologischen Räume, Math. Annalen92 (1934), S. 258. · doi:10.1007/BF01448008
[5] Bei Schauder ist der entsprechende Satz für metrische Räume bewiesen.
[6] Für den metrischen Raum kann man als {W} die Gesamtheit aller ?-Umgebungen der PunkteF nehmen. In diesem Falle bilden alle ?/3-Umgebungen eine zweifache Verfeinerung von {W}.
[7] Vgl. A. Tychonoff, Über topologische Erweiterung von Räumen, Math. Annalen102 (1929), S. 544, wo die Definition des Produktes von Strecken gegeben ist. · doi:10.1007/BF01782364
[8] Vgl. A. Tychonoff,, § 2. · doi:10.1007/BF01782364
[9] Vgl. M. Fréchet, Les espaces abstraits, Gauthier-Villars.
[10] Vgl. Urysohn, Sur un problème de M. Fréchet, Congrès-Dijon, 1925.
[11] Vgl. A. Tychonoff, Über einen Funktionenraum, dieser Band, S. 762-763. · Zbl 0012.30802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.