Vijayaraghavan, T. On the fractional parts of the powers of a number. I. (English) Zbl 0027.16201 J. Lond. Math. Soc. 15, 159-160 (1940). Man setze \(\{x\}=x-[x]\). Es sei \(\theta>1\) rational und nicht ganz. Dann hat die Folge \(\{\theta^1\}, \{\theta^2\}, \{\theta^3\}, \dots\) unendlich viele Häufungswerte. Verf. gibt einen Beweis dieses Satzes und teilt noch einen anderen, von A. Weil herrührenden Beweis mit. Reviewer: Jarník (Praha) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 10 Documents MSC: 11J54 Small fractional parts of polynomials and generalizations 11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure Keywords:distribution of fractional parts Citations:JFM 66.1217.01 × Cite Format Result Cite Review PDF Full Text: DOI Online Encyclopedia of Integer Sequences: Second term of the continued fraction expansion of (3/2)^n; or 0 if no term is present. First term of the continued fraction expansion of (3/2)^n.